برآورد مقاومت توده‌سنگ با شبکه شکستگی‌های بالقوه شکست در روش اجزای مجزا- رویکرد ورونویی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی معدن، نفت و ژئوفیزیک، دانشگاه صنعتی شاهرود

10.29252/anm.2019.1632

چکیده

به طور کلی تمام مدل‌های ارایه شده برای لحاظ شبکه شکستگی‌ها در توده‌سنگ، شکستگی‌های بالفعل موجود در توده‌سنگ با مقاومت کششی صفر است. در حالی که، شبکه‌ای از سطوح ضعیف از جمله پل‌های سنگی، رگچه‌ها، سطوح تورق و غیره گزینه‌های اصلی برای شکست در اثر تنش‌های القایی ایجاد شده دارای مقاومت برشی و کششی هستند. به همراه پارامترهای هندسی شبکه سطوح ضعیف ناپیوستگی‌ها، طبیعت ناهمگن پارامترهای مکانیکی ناپیوستگی‌ها برای فهم رفتار توده‌سنگ بسیار حائز اهمیت است. در این مقاله، تاثیر شبکه سطوح بالقوه مذکور بر مقاومت توده‌سنگ با استفاده از رویکرد شبکه شکستگی بالقوه- مدل ورونویی نرم‌افزار اجزای مجزا مطالعه شده است. در این راستا، شبکه شکستگی بالقوه کدنویسی و تابع توزیع برای پارامترهای ژئومکانیکی شکستگی‌ها بالقوه نیز در نظر گرفته شده است. با این رویکرد، سطوح ضعیف و بالقوه که پتانسیل بودن به صورت شکستگی را دارند نیز در شبکه شکستگی در نظر گرفته می‌شوند. سپس برای مطالعه، چهار گروه شبکه شکستگی بالقوه در نظر گرفته شد. به منظور مقایسه نتایج با حالت پایه یعنی استفاده از مقدار میانگین و حالات دیگر، پنج حالت مختلف برای یک حالت انحراف استاندارد تابع توزیع ویبول در نظر گرفته و در آخر شبکه شکستگی بالقوه مدلسازی و بررسی شد. نتایج بیانگر اهمیت رویکرد پیشنهادی برای ارزیابی مناسب‌تر مقاومت توده‌سنگ با در نظر گرفتن شبکه شکستگی‌های بالقوه است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Rock Mass Strength Using Potential Discrete Fracture Network (PDFN) in Voronoi Technique-DEM

نویسندگان [English]

  • Hadi Fathipour
  • Seyyed Mohammad Esmaeil Jalali
  • Seyyed Rahman Torabi
Dept. of Mining, Petroleum & Geophysics, Shahrood University of Technology, Shahrood, Iran
چکیده [English]

Summary
Almost all of the proposed models of Discrete Fracture Networks (DFN) embedded within rock masses are discontinuities with zero tension strength. While, potential discontinuities and weak surfaces such as rock bridges, veinlet, and schistose surfaces are a candidate for breakage under stress and have also a significant effect on rock mass strength. Simultaneously with geometrical parameters, this geomechanical heterogeneous nature of fractures is crucial for understanding rock mass behavior and characteristics. This paper focuses on the probabilistic effect of potential discontinuity properties on the rock mass strength using Potential Discrete fracture networks (PDFN)-bonded block models (BBM) framework. The cohesive crack model is used to define block contact behavior. A comparison of the results indicates the importance of the proposed model for the assessment of realistic rock mass strength instead of traditional DFN.
 
Introduction
Analysis of discrete fracture network (DFN) employing the complex nature of fracture patterns plays an important role in understanding the micro and macromechanical behavior of rock mass. Rock mass behavior analyses have traditionally been undertaken for discontinuity with zero tension strength along DFN to calculate mechanical properties. In point of this view, such methods regardless of geometrical parameters generally assume the same possibility of failure for all fractures in the rock mass. The distribution of the DFN strength parameter in Potential DFN can result in important changes in the strength of rock mass and remains a challenge in rock engineering design. The term of PDFN is used for those fracture network with tension and shear strength. Detailed analysis of the employed PDFN which elaborately highlights the role of the distribution of input strength property of each fracture that controls the real strength of rock mass has been presented in this research.
 
Methodology and Approaches
In the BBM-DEM, the Voronoi tessellation scheme is employed and the material is simulated as assemblies of several particles bonded together at their contact areas. In order to define contact law of BBM, a cohesive crack model (CCM) is implemented in the UDEC. The calibration process is carried out to obtain contact properties. DFN is written in c++, in which the probability distribution of cohesion, friction angle, and tension strength is considered. The sensitivities of the rock mass strength calculated using SRM e.g., UDEC-DFN to the variability of the input parameter are investigated. A discussion of results is then made base on a reference simulation performed without a distribution method. 4 different P21 are investigated.
 
Results and Conclusions
The cohesive crack model is implemented in UDEC to define contact law among generated BBM through the Voronoi tessellation technique. In order to assess the effect of the distribution of mechanical parameters in PDFN on the strength of rock mass, DFN is written and this feature is added. The results indicate the importance of the proposed model for the assessment of realistic rock mass strength in engineering applications.

کلیدواژه‌ها [English]

  • Discrete fracture network
  • Stochastic Analysis
  • Fracture Properties
  • Cohesive Crack Model
  • Bonded Block Model
  • Numerical Modelling

توده‌سنگ به طور معمول به دلیل ساختارهای تشکیل دهنده مانند ناپیوستگی‌ها (مانند ترک، درزه، سطوح ضعیف، گسل) ماهیت ناهمگن پیچیده‌ای دارد. رویکرد شبکه شکستگی مجزا ماهیت پیچیده‌ای از الگو و توزیع شبکه شکستگی‌ها را در نظر می‌گیرد و نقش بسیار مهمی در فهم رفتار میکرومکانیکی[1] ماکرومکانیکی[2،3] توده‌سنگ دارد. در برخی موارد مانند روش‌های معدنکاری تخریب توده‌ای و آتشکاری نیاز به ایجاد و توسعه ناپیوستگی‌ها در توده‌سنگ است. برای مثال در روش معدنکاری تخریب توده‌ای، برآورد تخریب‌پذیری و خرد شوندگی توده‌سنگ و در نتیجه خارج شدن مواد معدنی از نقاط تخلیه، از نظر موفقیت‌آمیز بودن عملیات معدنکاری بسیار حایز اهمیت است[4]. در مقابل، مسایل مکانیک سنگی دیگری نیز وجود دارند که در آنها اصرار بر کاهش توسعه ناپیوستگی‌ها و عدم تشکیل ناپیوستگی‌های جدید است. برای مثال، ملاحظات مربوط به ارزیابی پایداری شیب‌های معادن روباز و پایداری فضاهای زیرزمینی از این دسته مسایل هستند.

[1]           Hamdi, P., Stead, D., & Elmo, D. (2015). Characterizing the influence of stress-induced microcracks on the laboratory strength and fracture development in brittle rocks using a finite-discrete element method-micro discrete fracture network FDEM-μDFN approach. Journal of Rock Mechanics and Geotechnical Engineering, 7(6), 609-625. https://doi.org/10.1016/j.jrmge.2015.07.005
[2]           Vyazmensky, A., Stead, D., Elmo, D., & Moss, A. (2010). Numerical analysis of block caving-induced instability in large open pit slopes: a finite element/discrete element approach. Rock mechanics and rock engineering, 43(1), 21-39. https://doi.org/10.1007/s00603-009-0035-3
[3]           Ivars, D. M., Pierce, M. E., Darcel, C., Reyes-Montes, J., Potyondy, D. O., Young, R. P., & Cundall, P. A. (2011). The synthetic rock mass approach for jointed rock mass modelling. International Journal of Rock Mechanics and Mining Sciences, 48(2), 219-244. https://doi.org/10.1016/j.ijrmms.2010.11.014
[4]           Emami Meybodi, E. and Jalali, S. M. E. (2015). "Estimation of Fragmentation on Geometrical Viewpoint." Journal of Analytical and Numerical Methods in Mining Engineering 5(9): 51-61.
http://dx.medra.org/10.17383/S2251-6565(15)940915-X
[5]           Snow, D. T. (1965). A parallel plate model of fractured permeable media. PhD Thesis, Univ. of California.
[6]           Dershowitz, W. S., & Einstein, H. H. (1988). Characterizing rock joint geometry with joint system models. Rock mechanics and rock engineering, 21(1), 21-51. https://doi.org/10.1007/BF01019674.
[7]           Baecher, G. B., Lanney, N. A., & Einstein, H. H. (1977, January). Statistical description of rock properties and sampling. In The 18th US Symposium on Rock Mechanics (USRMS). American Rock Mechanics Association.
[8]           Barton, C. M. (1978, January). Analysis of joint traces. In 19th US Symposium on Rock Mechanics (USRMS). American Rock Mechanics Association.
[9]           Geier, J. E., Lee, K., & Dershowitz, W. S. (1988). Field validation of conceptual models for fracture geometry. Transactions of American Geophysical Union, 69(44), 1177.
[10]         Dershowitz,W.S., Lee, G., Geier, J., Foxford, T., LaPointe, P., Thomas, A., (1998). FracMan, Interactive Discrete Feature Data Analysis, Geometric Modeling, and Exploration Simulation. User Documentation, Version 2.6. Golder Associates Inc., Washington.
[11]         Staub, I., Fredriksson, A., & Outters, N. (2002). Strategy for a Rock Mechanics Site Descriptive Model. Development and testing of the theoretical approach (No. SKB-R--02-02). Swedish Nuclear Fuel and Waste Management Co..
[12]         Veneziano, D. (1978). Probabilistic model of joints in rock. Unpublished Manuscript, MIT, Cambridge, MA.
[13]         Dershowitz, W.S., 1984. Rock Joint System. (Ph.D. Thesis). Massachusetts Institute of Technology, Cambridge, MA .
[14]         Ivanova, V. M. (1995). Three-dimensional stochastic modeling of rock fracture systems (Doctoral dissertation, Massachusetts Institute of Technology).
[15]         Ivanova, V. M., & Einstein, H. H. (2004, January). Three-dimensional hierarchical stochastic modeling of rock fracture systems: An example from the Yates field. In Gulf Rocks 2004, the 6th North America Rock Mechanics Symposium (NARMS). American Rock Mechanics Association.
[16]         Gervais, F., Gentier, S., Chiles, J. P. (1995). Geostatistical analysis and hierarchical modelling of a fracture network in a stratified rock mass.In: Myer, L. R., Goodman, R. E., Cook, N. G., & Tsang, C. F.(Eds.) Fractured and jointed rock masses, 153-159, Balkema, Rotterdam.
[17]         LaPointe, P.R., (1993). Pattern analysis and simulation of joints for rock engineering. Comprehensive Rock Engineering. Rock Testing and Site Characterization vol. Ш, pp. 215–239.
[18]         Turichshev, A., & Hadjigeorgiou, J. (2017). Development of Synthetic Rock Mass Bonded Block Models to Simulate the Behaviour of Intact Veined Rock. Geotechnical and Geological Engineering, 35(1), 313-335. https://doi.org/10.1007/s10706-016-0108-5
[19]         Shang, J., Hencher, S. R., & West, L. J. (2016). Tensile Strength of Geological Discontinuities Including Incipient Bedding, Rock Joints and Mineral Veins. Rock Mechanics and Rock Engineering, 49(11), 4213-4225. https://doi.org/10.1007/s00603-016-1041-x
[20]         Lorig, L. J., Darcel, C., Damjanac, B., Pierce, M., & Billaux, D. (2015). Application of discrete fracture networks in mining and civil geomechanics. Mining Technology, 124(4), 239-254. https://doi.org/10.1179/1743286315Y.0000000021
[21]         Lei, Q., Latham, J. P., & Tsang, C. F. (2017). The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks. Computers and Geotechnics, 85, 151-176. https://doi.org/10.1016/j.compgeo.2016.12.024
[22]         Farahmand, K., Vazaios, I., Diederichs, M. S., & Vlachopoulos, N. (2018). Investigating the scale-dependency of the geometrical and mechanical properties of a Moderately jointed rock using a synthetic rock mass (SRM) approach. Computers and Geotechnics, 95, 162-179. https://doi.org/10.1016/j.compgeo.2017.10.002
[23]         Evans, R. H., & Marathe, M. S. (1968). Microcracking and stress-strain curves for concrete in tension. Matériaux et Construction, 1(1), 61-64.
[24]         Bandis, S. C., Lumsden, A. C., & Barton, N. R. (1983). Fundamentals of rock joint deformation. In International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 20(6), pp. 249-268.
[25]         Kovari, K., Tisa, A., Einstein, H. H., & Franklin, J. A. (1983). Suggested methods for determining the strength of rock materials in triaxial compression: revised version. Intl J of Rock Mech & Mining Sci & Geomechanic Abs, 20(6).
[26]         Kazerani, T., & Zhao, J. (2010). Micromechanical parameters in bonded particle method for modelling of brittle material failure. International journal for numerical and analytical methods in geomechanics, 34(18), 1877-1895. https://doi.org/10.1002/nag.884
[27]         Pine, R. J., Owen, D. R. J., Coggan, J. S., & Rance, J. M. (2007). A new discrete fracture modelling approach for rock masses. Geotechnique, 57(9), 757-766. https://doi.org/10.1680/geot.2007.57.9.757