بررسی تاثیر گرانروی بر عملکرد جداکننده دو مرحله‌ای گریز از مرکز با استفاده از دینامیک سیالات محاسباتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی معدن و متالورژی، دانشگاه یزد

2 دانشکده مهندسی مکانیک، دانشگاه یزد

10.29252/anm.2019.12439.1406

چکیده

جداکننده‌های دو مرحله‌ای گریز از مرکز، جدیدترین نسل جداکننده‌های ثقلی مورد استفاده در پرعیارسازی و جدایش مواد معدنی هستند. رفتار و الگوی جریان در این جداکننده‌ها بسیار پیچیده است. یکی از پارامترهای کلیدی موثر بر عملکرد و کارایی جداکننده‌های دو مرحله‌ای گریز از مرکز، گرانروی سیال ورودی به جداکننده است. در این مطالعه، به منظور بررسی اثر گرانروی و چگالی سیال بر عملکرد و میدان جریان داخل یک جداکننده دو مرحله‌ای گریز از مرکز، از رویکرد دینامیک سیالات محاسباتی (CFD) و مدل فاز مجزا (DPM) استفاده شد. به همین منظور، مدل‌های حجم سیال و تنش رینولدز به ترتیب برای شناسایی سطح اشتراک بین هسته هوا و سیال ورودی و آشفتگی مورد استفاده قرار گرفت. با افزایش گرانروی و چگالی سیال، سرعت مماسی داخل جداکننده و حجم هسته هوا کاهش می‌یابد که منجر به کاهش کارآیی جدایش می‌شود. همچنین به دلیل افزایش مقاومت سیال، بازیابی واسطه در جریان شناور افزایش می‌یابد. با افزایش گرانروی سیال از 3-10×1 به 3-10×09/3 پاسکال ثانیه، مقدار بازیابی واسطه در مراحل اول و دوم جداکننده به ترتیب 56 و 24 درصد افزایش می‌یابد، حجم هسته هوا به ترتیب 39 و 30 درصد کاهش می‌یابد و خطای احتمال (Ep) نیز به ترتیب 98 و 131 درصد افزایش می‌یابد. افزایش سهم ذرات راه یافته به محصول میانی و نیز کاهش دقت جدایش در اثر افزایش گرانروی سیال از نتایج برجسته تحقیق حاضر بود که با استفاده از ردیابی ذرات فاز گسسته مشاهده شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical Simulation of the Influence of Viscosity on the Performance of a Two-Stage Centrifugal Separator

نویسندگان [English]

  • mohsen Aghaei 1
  • Reza Dehghan 1
  • Ali akbar Dehghan 2
  • Hojat Naderi 1
1 Dept. of Mining and Metallurgy, Yazd University, Yazd, Iran
2 Dept. of Mechanical Engineering, Yazd University, Yazd, Iran
چکیده [English]

Summary
In this research, computational fluid dynamics (CFD) and discrete phase model (DPM) were used to investigate the influence of medium viscosity on the flow field and the performance of a two-stage centrifugal separator. Volume of fluid (VOF) and Reynolds stress model (RSM) were used to tack the liquid-liquid interface and turbulence modeling, respectively.
 
Introduction
Two-stage centrifugal separators are the most novel generation of gravity separators that are increasingly used in the beneficiation of coal and minerals. However, the flow behavior and pattern in these separators are very complex and the mechanism of separation in these two-stage separators and the effects of different parameters on their performance has rarely been reported. The purpose of this paper is to review the influence of medium viscosity on the fluid flow and the performance of the separator. On this basis, an experimental apparatus was built. In this research, a CFD and discrete phase model (DPM) has been performed. The air core pattern and size, the pressure drop across the separator, the velocity and pressure fields, and the turbulence intensity were studied in response to the changing parameters.
 
Methodology and Approaches
An experimental setup including a 70 mm Two-stage centrifugal separator that was made of transparent Plexiglas and the complementary components such as two tanks, pumps, and instruments were manufactured to perform the physical experiments. The effects of viscosity were changed in three different simulations run. Using the transparent body for the separator, the internal flow pattern including the air core behavior was recorded and the required data were consequently extracted via the image processing technique. The pattern and the size of the air core in each stage of the Tri-Flo separator and the particle fate were used for the validation of CFD simulation results. The CFD simulation was performed with two Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz, 32 GB RAM memory, and 2 TB hard-disc memory using Ansys Fluent version 18.0. The duration of each simulation was about 144 hours.
 
Results and Conclusions
With an increase in the medium viscosity, the performance of the separator was decreased as a consequence of decreasing the tangential velocity, and the air volume fractions inside the separator. Moreover, a high viscosity increases the drag force and consequently the medium recovery into the floating stream. Such an effect consequently increased the separation density of the separator. When the medium viscosity was changed from 1×10-3 to 3.09×10-3 Pa.s, the medium recovery of the first and the second stages of the separator were increased by about 56% and 23.7 %, respectively. Ecart probable (Ep) values for the first and second stages were also increased by 98% and 104%, and the air volume fractions were decreased by about 38.73% and 29.35%, respectively.

کلیدواژه‌ها [English]

  • Two-stage centrifugal separator
  • Reynolds stress model (RSM)
  • Air core
  • Computational fluid dynamics (CFD)
  • Discrete phase model (DPM)

جداکننده دو مرحله‌ای گریز از مرکز در سال 1982 توسط رووف توسعه داده شد[1]. این جداکننده از دو محفظه استوانه‌ای در قالب یک دستگاه عملیاتی تشکیل شده است. جداکننده دو مرحله‌ای گریز از مرکز مانند سیکلون‌های واسطه سنگین برای جدایش ماده با ارزش از ناخالصی‌های همراه آن، از نیروی گریز از مرکز استفاده می‌کند. از تفاوت‌های بارز جداکننده دو مرحله‌ای نسبت به سیکلون واسطه سنگین، می‌توان به عدم نیاز به پمپ برای ورود ماده معدنی به محفظه جدایش و نیز قابلیت تولید همزمان سه محصول در یک دستگاه جداکننده اشاره کرد. جداکننده در هر مرحله دارای دو دهانه مماسی ورودی و خروجی در انتهای پایینی و بالایی است. وقتی سیال واسطه از طریق دهانه مماسی پایینی جداکننده تحت فشار ثابت به بخش حلزونی شکل وارد شود، در طول مسیر یک جریان چرخشی که به سمت بالا حرکت می‌کند، ایجاد می‌نماید. سیال با حرکتی چرخشی به سمت بالا حرکت می‌کند تا به دیواره انتهای بالایی جداکننده برخورد ‌کند که در این حالت بخشی از آن از طریق دهانه غوطه‌ور تخلیه می‌شود و مازاد آن نیز در خلاف جهت چرخش اولیه و در داخل جریان اولی به سمت پایین حرکت می‌کند و از طریق دهانه شناور خارج می‌شود. بنابراین جریان سیال در داخل جداکننده، از دو مارپیچ تشکیل شده است که بر خلاف جهت یکدیگر حرکت می‌کنند. مارپیچ داخلی به لایه باریکی از هوا که از سمت دریچه خوراک به سمت دریچه شناور جریان دارد، محدود می‌شود. مارپیچ بیرونی از کناره‌های ظرف به سمت خروجی غوطه‌ور حرکت می‌کند. وقتی ذرات ماده معدنی در فشار اتمسفر به محفظه اول جداکننده خوراک‌دهی می‌شود، گرداب اولیه تشکیل شده و حرکت چرخشی سیال، ذرات ورودی را به سرعت، بر مبنای اختلاف چگالی تقسیم می‌کند. ذراتی که چگالی کمتری نسبت به واسطه چرخنده دارند نمی‌توانند به داخل سیال نفوذ کنند و از طریق دهانه مرکزی پایینی جداکننده (جریان شناور) تخلیه می‌شوند. جریان خارج شده از این دهانه چگالی پایین‌تری نسبت به واسطه ورودی دارد. ذرات با چگالی بالاتر نسبت به واسطه چرخنده به داخل واسطه نفوذ کرده و به سمت دیواره جداکننده دو مرحله‌ای گریز از مرکز ته‌نشین می‌شوند و از طریق دهانه مماسی بالایی جداکننده (جریان غوطه‌ور) خارج می‌شوند[3-1].

[1]           Adorjan.L.A, (1985). “Mineral Processing Innovations”, Canadian Metallurgical Quarterly, 24(1): 15-25.
 [2]           Ferrara.G, Machiavelli.G, Bevilacqua.P, Meloy.T.P, (1994). “Tri-Flo: A multistage high- sharpness DMS process with new applications”, Mining, Metallurgy & Exploration, 11(2): 63-73.
[3]           Ruff.H.J, (1983). “New developments in dynamic DMS systems”, Mineral Engineering Society, N.W.Midlands Section. Mine and Quarry: 24-28.
[4]           Vakamalla.T.R, Mangadoddy.N, (2015). “Rheology-based CFD modeling of magnetite medium segregation in a dense medium cyclone”, Powder Technology, 277: 275-286.
[5]           Brennan.M.S, Holtham.P.N, Lyman.G.J, Rong.R.X, (2002). “Computational fluid dynamic simulation of dense medium cyclones”, in Ninth Australian Coal Preparation Conference, Yeppoon: Australian Coal Preparation Society.
[6]           Chu.K.W, Wang.B, Yu.A.B, Vince. A, (2012). “Computational study of the multiphase flow in a dense medium cyclone: Effect of particle density”, Chemical Engineering Science, 73:123-139.
[7]           Narasimha.M, Brennan.M.S, Holtham.P.N, Napier-Munn.T.J, (2007). “A comprehensive CFD model of dense medium cyclone performance”, Minerals Engineering, 20(4):414-426.
[8]           Wang.B, Chu.K.W, Yu.A.B, Vince.A, Barnet.G.D, Barnett.P.J, (2011). “Computational study of the multiphase flow and performance of dense medium cyclones: Effect of body dimensions”, Minerals Engineering, 24(1):19-34.
[9]           Tavares.L.M, Souza.L.L.G, Lima.J.R.B, Possa.M.V, (2002). “Modeling classification in small-diameter hydrocyclones under variable rheological conditions”, Minerals Engineering, 15(8):613-622.
[10]         He.M, Wang.Y, Forssberg.E, (2006). “Parameter studies on the rheology of limestone slurries”, International Journal of Mineral Processing, 78(2):63-77.
[11]         Bosman.J, (2014). “The art and science of dense medium selection”, Journal of the Southern African Institute of Mining and Metallurgy, 114:529-536.
[12]         Kawatra.S.K, Bakshi.A.K, Rusesky.M.T, (1996). “The effect of slurry viscosity on hydrocyclone classification”, International Journal of Mineral Processing, 48(1):39-50.
[13]         Bevilacqua.P, DeLorenzi.L, Ferrara.G, (2000). “Rheology of Low Density Suspensions in Dense Medium Separation of Post-consumer Plastics”, Coal Preparation, 21(2):197-209.
[14]         Shi.F.N, Napier-Munn.T.J, Asomah.I.K, (2000). “Rheological Effects in Grinding and Classification”, Mineral Processing and Extractive Metallurgy Review, 20(1):123-131.
[15]         Possa.M.V, Lima.J.R.B, (2000). “The effect of viscosity on small-diameter hydrocyclones' performance in desliming process”, in Developments in Mineral Processing, Massacci.P, Editor. Elsevier. p. C4-29-C4-35.
[16]         Delgadillo.J.A, Rajamani. R.K, (2009). “Computational fluid dynamics prediction of the air-core in hydrocyclones”, International Journal of Computational Fluid Dynamics, 23(2):189-197.
[17]         Narasimha.M, Brennan.M, Holtham.P.N, (2006). “Large eddy simulation of hydrocyclone-prediction of air-core diameter and shape”, International Journal of Mineral Processing, 80(1):1-14.
[18]         Doby.M.J, Nowakowski.A.F, Yiu.I, Dyakowski. T, (2008). “Understanding air core formation in hydrocyclones by studying pressure distribution as a function of viscosity”, International Journal of Mineral Processing, 86(1):18-25.
[19]         Murthy.Y.R, Bhaskar.K.U, (2012). “Parametric CFD studies on hydrocyclone”, Powder Technology, 230:36-47.
[20]         Yang.L, Tian.J.L, Yang.Z, Li.Y, Fu.C.H, Zhu.Y.H, Pang.X.L, (2015). “Numerical analysis of non-Newtonian rheology effect on hydrocyclone flow field”, Petroleum, 1(1):68-74.
[21]         Marthinussen.S.A, Chang.Y.F, Balakin.B, Hoffmann.A.C, (2014). “Removal of particles from highly viscous liquids with hydrocyclones”, Chemical Engineering Science, 108:169-175.
[22]         Muzanenhamo.P, (2014). “Assessing the effect of cone ratio, feed solids concentration and viscosity on hydrocyclone performance”, in Department of Chemical Engineering. MSc thesis, University of Cape Town.
[23]         Kawatra.S.K, Bakshi.A.K, Rusesky.M.T, (1996). “Effect of viscosity on the cut (d50) size of hydrocyclone classifiers”, Minerals Engineering, 9(8):881-891.
[24]         Waters.J, (2012). “The influence of slurry viscosity on hydrocyclone performance”, in Department of Chemical Engineering, MSc thesis, University of Cape Town.
[25]         Xu.Y, Tang.B, Song.X, Sun.Z, Yu.J, (2018). “Simulation analysis on the separation characteristics and motion behavior of particles in a hydrocyclone”, Korean Journal of Chemical Engineering, 35(12):2355-2364.
[26]         Flintoff.B, (2019). “Part 4: Classification and Washing”, in SME Mineral Processing & Extractive Metallurgy Handbook, Dunne.R.C, Kawatra.S.K, Young.C.A, Editors. Society for Mining, Metallurgy, and Exploration: Colorado. p. 639-654.
 [27]         Wills.B.A, Finch.J.A, (2016). “Chapter 11 - Dense Medium Separation (DMS)”, in Wills' Mineral Processing Technology (Eighth Edition), Butterworth-Heinemann: Boston. p. 245-264.
[28]         Belardi.G, Bozano.P, Mencinger.J, Piller.M, Schena.G, (2014). “Numerical simulation of water-air flow pattern in a Tri-Flo™ cylindrical separator”, in Proceedings of the XXVII International Mineral Processing Congress. International Mineral Processing Congress: Santigo, Chile.
[29]         Feng.D, Huang.S, Luo.L, Ma.W.G, (2012). “CFD Analysis of Two-Phase Flow in a Solid-Liquid Hydrocyclone”, Applied Mechanics and Materials, 130-134:3640-3643.
[30]         Feng.D, Huang.S, Luo.L, Ma.W.G, (2011). “Prediction of Liquid Viscosity Effect on Flow Field and Performance in a Solid-Liquid Hydrocyclone”, Advanced Materials Research, 317-319:401-404.
[31]         Cai.P, Wang.B, (2013). “Numerical investigation on distribution characteristics of dense dispersed phase in hydrocyclones”, AIP Conference Proceedings, 1547(1):410-418.
[32]         Ren.L.C, Meng.J, Lei.Z.Z, Wang.J.H, (2012). “Effect of Viscosity on the Separation Ability of a Hydrocyclone”, Applied Mechanics and Materials, 233:7-10.
[33]         Yan.Y.J, Wang.Z.C, Shang.Y.X, Li.S, Xu.Y, (2014). “Effect of Produced Liquid Viscosity on Flow Characteristics and Separating Property of Downhole Hydrocyclone Desander”, Advanced Materials Research, 933:250-254.
[34]         Wang.B, Chu.K.W, Yu.A.B, Vince.A, (2009). “Numerical studies of the effects of medium properties in dense medium cyclone operations”, Minerals Engineering, 22(11):931-943.
[35]         Napier-Munn.T.J, (1990). “The Effect of Dense Medium Viscosity on Separation Efficiency”, Coal Preparation, 8(3-4):145-165.
[36]         Salimi.A, (2015). “The effect of fluid viscosity and geometry on hydrocyclone performance”, in Department of Physics and Technology. MSc thesis, University of Bergen.
[37]         Noori.M, Dehghan.R, (2019). “Use of density tracers in evaluating performance of Tri-Flo circuits Case study: Tabas (Iran) coal preparation plant”, Journal of Mining and Environment, 10(2): 441-450.