طراحی و شبیه‌سازی دیوار تقویت شده با سپر بتنی انبار مواد منفجره در برابر بارگذاری انفجار

نوع مقاله : یادداشت فنی

نویسندگان

1 گروه مهندسی عمران، دانشگاه آزاد اسلامی، واحد شاهرود، شاهرود، ایران

2 گروه مهندسی معدن، دانشگاه آزاد اسلامی، واحد شاهرود، شاهرود، ایران

10.29252/anm.2019.7855.1270

چکیده

حملات تروریستی با آسیب رساندن به سازه­ها و زیرساخت­های یک کشور می‌تواند صدمات مالی و جانی زیادی را نیز به بار آورد؛ بنابراین توجه به موضوع پدافند غیرعامل در ساخت سازه­ها و همچنین طراحی و کنترل این سازه­ها باید مدنظر قرار گیرد. یکی از مهم‌ترین زیرساخت­های کشور معادن هستند. در معادن، حساس­ترین و آسیب­پذیر­ترین محل در حملات تروریستی انبارهای نگهداری مواد منفجره و چاشنی­ها و فتیله‌های انفجاری هستند. در این پژوهش انبار نگهداری چاشنی­های الکتریکی با ابعاد 5/6 در 5/3 متر ابتدا در ETABS طراحی و سپس برای بررسی رفتار و میزان مقابله این دیوار در برابر بار انفجاری، از برنامه اجزای محدود ABAQUS استفاده شد. دیوار برشی U شکل، با طول و ارتفاع سه متری انتخاب گردید. دیوار برشی در چهار حالت: بدون سپر و همراه با سپر محافظ 8، 10 و 15 سانتی‌متری، برای مقابله با بارهای انفجاری بررسی شد. بارهای انفجاری در سه فاصله 10، 50 و 100 سانتی‌متری از مرکز سپر قرار داده شد. مشخص گردید که وجود سپر محافظ بتنی می­تواند به شدت میزان جابجایی دیوار برشی را تا 4/97 درصد، میزان تنش دیوار برشی را تا 4/56 درصد و میزان تنش پای ستون را تا 7/36 درصد کاهش دهد و از دیوار در برابر بارهای انفجاری محافظت نماید. نتیجه بررسی نشان داد ترکیب دیوار برشی بتنی به همراه سپر محافظ، سازه مناسبی برای نگهداری مواد منفجره و چاشنی­های انفجاری معادن خواهد بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Design and Simulation of Reinforcement Wall with Concrete Shield Against Blasting Loads in the Explosives Storage

نویسندگان [English]

  • Amirreza Khodabakhshi 1
  • Mohammad Taji 2
1 Dept. of Civil Engineering, Shahrood branch, Islamic Azad University, Shahrood, Iran
2 Dept. of Mine Engineering, Shahrood branch, Islamic Azad University, Shahrood, Iran
چکیده [English]

Summary
Terrorist attacks could cause serious destruction and death by damaging to buildings and infrastructures. One of the most vulnerable mine structures are storages containing explosives, detonator caps and Detonation fuse. In this study a 6.5 x 2.5 storage of electrical caps is designed by ETABS firstly. Then its wall is modeled in finite element commercial software ABAQUS in order to investigate its behavior and resistance under blast loads. The U-shaped shear wall type with dimensions of 3x3 meter is chosen for this wall, and the wall is considered in 4 conditions: with 8, 10 and 15 cm protective shield and without protective shield. Blast loads are positioned in 10, 50 and 100cm distance of center of the shield. The results show that in the existence of the shear wall, displacements of the shear wall, shear stress of the wall and stress at the base of the column decreases up to 97.4%, 56.4% and 36.7% respectively. It’s concluded that reinforcement of shear walls with protective shields provides sturdy structures in order to store explosives and detonator caps in mines.
 
Introduction
If an explosion takes place outside of these detonator caps and detonation fuses, the of the blast wave effect could cause a blast at explosives inside the storage and lead to a great damage. Hence, it’s important to study these effects on this kind of structures. In this study, a 3.5x6.5 storage of electrical cap, whose walls are designed as U-type shear walls protected by concrete shield. In order to investigation behavior of the wall and the effectiveness of the shield against blast loads, a wall with dimensions of 3x3 is modeled in ABAQUS under 4 distinct conditions: with various 8, 10 and 15 cm shield and without shield.
 
Methodology and Approaches
To design the walls, the software ETABS is used, and finite element commercial software ABAQUS, which has great ability to solve explicit dynamic problems, is employed to simulate the behavior of walls and shields under blast loads.
 
Results and Conclusions
By protecting the wall against blast loads, Concrete shield was able to reduce the displacement of the wall, stress of the wall and stress at the base of the column up to 97.4%, 56.4 and 36.7 respectively. Besides, it keeps explosives and detonator caps inside the storage safe by degrading the energy of the outside blast wave.

کلیدواژه‌ها [English]

  • Explosives storage
  • Blast loads
  • Shear Wall
  • Concrete Shield
  • ABAQUS Software

بتن ماده­ای است که در صنعت ساخت و ساز به وفور از آن استفاده می‌شود و می‌توان این ماده را در ساخت سازه‌های شهری و نظامی به کار برد. حملات تروریستی در سالیان اخیر خسارات جانی و مالی زیادی را به بار آورده است. برخی ساختمان­ها مانند فضاهای درمانی، بهداشتی، خدماتی، صنعتی و ... به دلیل نقش مهمی که در شرایط بحرانی دارند، از ارزش دوچندانی برخوردار هستند. یکی از مهم‌ترین سازه­ها که در صورت مواجه با این نوع حملات بسیار آسیب‌پذیر است، انبارهای نگهداری چاشنی­ها و مواد آتشباری معادن است. در کشور حدوداً 960 انبار نگهداری مواد منفجره مربوط به معادن و 1070 انبار نگهداری مواد منفجره برای پروژه‌های عمرانی از قبیل پروژه‌های سدسازی وزارت نیرو، پروژه‌های لرزه‌نگاری وزارت نفت و پروژه‌های تونلسازی و راه‌سازی وزارت راه و شهرسازی وجود دارد. از این‌رو لزوم طراحی سازه‌های انبار مربوط به نگهداری مواد منفجره و چاشنی آنها به شدت باید مورد توجه و باز طراحی جهت تأمین اصول پدافند غیرعامل قرار گیرد تا در شرایط اضطرار و بحران معادن کشور ایمن و محفوظ گردند.

[1]           Anandavalli, N., Lakshmanan, N., Iyer, N. R., Knight, G. S., & Rajasankar, J. (2011). A novel modelling technique for blast analysis of steel-concrete composite panels. Procedia Engineering, 14, 2429-2437.
[2]           Razaqpur, A. G., Tolba, A., & Contestabile, E. (2007). Blast loading response of reinforced concrete panels reinforced with externally bonded GFRP laminates. Composites Part B: Engineering, 38(5), 535-546 (In Persian).
[3]           Garfield, T. T., Richins, W. D., Larson, T. K., Pantelides, C. P., & Blakeley, J. E. (2011). Performance of RC and FRC wall panels reinforced with mild steel and GFRP composites in blast events. Procedia Engineering, 10, 3534-3539.
[4]           Pantelides, C. P., Garfield, T. T., Richins, W. D., Larson, T. K., & Blakeley, J. E. (2014). Reinforced concrete and fiber reinforced concrete panels subjected to blast detonations and post-blast static tests. Engineering structures, 76, 24-33.
[5]           Zhang, F., Wu, C., Zhao, X. L., Heidarpour, A., & Li, Z. (2016). Experimental and numerical study of blast resistance of square CFDST columns with steel-fibre reinforced concrete. Engineering Structures.
[6]           Coughlin, A. M., Musselman, E. S., Schokker, A. J., & Linzell, D. G. (2010). Behavior of portable fiber reinforced concrete vehicle barriers subject to blasts from contact charges. International Journal of Impact Engineering, 37(5), 521-529.
[7]           Ha, J. H., Yi, N. H., Choi, J. K., & Kim, J. H. J. (2011). Experimental study on hybrid CFRP-PU strengthening effect on RC panels under blast loading. Composite Structures, 93(8), 2070-2082.
[8]           Wang, J., Ren, H., Wu, X., & Cai, C. (2016). Blast response of polymer-retrofitted masonry unit walls. Composites Part B: Engineering.
[9]           Yamaguchi, M., Murakami, K., Takeda, K., & Mitsui, Y. (2011). Blast resistance of double-layered reinforced concrete slabs composed of precast thin plates. Journal of Advanced Concrete Technology, 9(2), 177-191.
 [10]         Rafiei, S., Hossain, K. M. A., Lachemi, M., Behdinan, K., & Anwar, M. S. (2013). Finite element modeling of double skin profiled composite shear wall system under in-plane loadings. Engineering Structures, 56, 46-57.
[11]         Goel, M. D., & Matsagar, V. A. (2013). Blast-resistant design of structures. Practice Periodical on Structural Design and Construction, 19(2), 04014007.
[12]         Akers, S., Ehrgott, J., & Rickman, D. (2006, June). Numerical simulations of explosive blast pressures during wall breaching. In HPCMP Users Group Conference, 2006 (pp. 3-3). IEEE.
[13]         Yusof, M. A., Nor, N. M., Ismail, A., Sohaimy, R., Daud, N. G. N., Peng, N. C., ... & Zain, M. (2011, August). Measurement of field blast testing data using high speed data acquisition system for steel fiber reinforced concrete. In Defense Science Research Conference and Expo (DSR), 2011 (pp. 1-4). IEEE.
[14]         Elsanadedy, H. M., Almusallam, T. H., Alharbi, Y. R., Al-Salloum, Y. A., & Abbas, H. (2014). Progressive collapse potential of a typical steel building due to blast attacks. Journal of Constructional Steel Research, 101, 143-157.
[15]         Fatt, M. S. H., & Sirivolu, D. (2015). Blast response of double curvature, composite sandwich shallow shells. Engineering Structures, 100, 696-706.
[16]         Zhang, F., Wu, C., Wang, H., & Zhou, Y. (2015). Numerical simulation of concrete filled steel tube columns against BLAST loads. Thin-Walled Structures, 92, 82-92.
[17]         Štoller, M. E. J., & Zezulová, E. (2015, May). The field testing of high performance fiber reinforced concrete slabs under the TNT load explosion together with the analytical solution and the numerical modelling of those tests results. In Military Technologies (ICMT), 2015 International Conference on (pp. 1-8). IEEE.
[18]         Qing, J. Y., Bing, W. J., Chao, L. T., & Hai, L. C. (2015, September). The Simulation Analysis on the Numerical Destructiveness of Different Wall Materials under the Explosion Overpressure Shock Wave. In Instrumentation and Measurement, Computer, Communication and Control (IMCCC), 2015 Fifth International Conference on (pp. 20-24). IEEE.
[19]         Parisi, F., Balestrieri, C., & Asprone, D. (2016). Blast resistance of tuff stone masonry walls. Engineering Structures, 113, 233-244.
 [20]         Campidelli, M., Tait, M. J., El-Dakhakhni, W. W., & Mekky, W. (2016). Numerical strategies for damage assessment of reinforced concrete block walls subjected to blast risk. Engineering Structures, 127, 559-582.
[21]         Li, J., Wu, C., & Hao, H. (2016, January). Spallation of reinforced concrete slabs under contact explosion. In Defence Technology (ACDT), 2016 Second Asian Conference on (pp. 42-45). IEEE.
[22]         Furqan, A., Santosa, S. P., Putra, A. S., Widagdo, D., Gunawan, L., & Arifurrahman, F. (2017). Blast Impact Analysis of Stiffened and Curved Panel Structures. Procedia Engineering, 173, 487-494.
[23]         Dear, J. P., Rolfe, E., Kelly, M., Arora, H., & Hooper, P. A. (2017). Blast Performance of Composite Sandwich Structures. Procedia Engineering, 173, 471-478.
[24]         Gargano, A., Pingkarawat, K., Blacklock, M., Pickerd, V., & Mouritz, A. P. (2017). Comparative assessment of the explosive blast performance of carbon and glass fibre-polymer composites used in naval ship structures. Composite Structures, 171, 306-316.
[25]         Wang, S. (2017). Evaluation of underground pipe-structure interface for surface impact load. Nuclear Engineering and Design, 317, 59-68.
[26]         Yu, Z. L., Xue, P., & Chen, Z. (2017). Reprint of: Nested tube system applicable to protective structures against blast shock. International Journal of Impact Engineering, 105, 13-23.
[27]         Guo, Z., Chen, W., Zhang, Y., & Zou, H. (2017). Post fire blast-resistances of RPC-FST columns using improved Grigorian model. International Journal of Impact Engineering, 107, 80-95.
[28]         Ding, Y., Song, X., & Zhu, H. T. (2017). Probabilistic progressive collapse analysis of steel frame structures against blast loads. Engineering Structures, 147, 679-691.
[29]         Ibrahim, Y. E., Ismail, M. A., & Nabil, M. (2017). Response of Reinforced Concrete Frame Structures under Blast Loading. Procedia Engineering, 171, 890-898.
[30]         Li, Z., Chen, L., Fang, Q., Hao, H., Zhang, Y., Chen, W., & Bao, Q. (2017). Study of autoclaved aerated concrete masonry walls under vented gas explosions. Engineering Structures, 141, 444-460.
[31]         Markose, A., & Rao, C. L. (2017). Mechanical response of V shaped plates under blast loading. Thin-Walled Structures, 115, 12-20.
[32]         Arora, H., Del Linz, P., & Dear, J. P. (2017). Damage and deformation in composite sandwich panels exposed to multiple and single explosive blasts. International Journal of Impact Engineering, 104, 95-106.
[33]         Davison, L., Horie, Y., & Graham, R. A. (2006). Shock Wave and High Pressure Phenomena. High-Energy-Density Physics.
[34]         Hao, Y., & Hao, H. (2014). Influence of the concrete DIF model on the numerical predictions of RC wall responses to blast loadings. Engineering Structures, 73, 24-38.
[35]         Bozorgvar, M. and Shoshtari, A. (2011). “Blast Effects on Concrete Buildings Earthquake Resistant”. The sixth National Congress of Civil Engineering (In Persian).
[36]         Sahoo, D. K., Guha, A., Tewari, A., & Singh, R. K. (2017). Performance of Monolithic Plate and Layered Plates Under Blast Load. Procedia Engineering, 173, 1909-1917.
[37]         Zhai, C., Chen, L., Xiang, H., & Fang, Q. (2016). Experimental and numerical investigation into RC beams subjected to blast after exposure to fire. International Journal of Impact Engineering, 97, 29-45