نقدی بر روش‌های سنتی ارزیابی اثرات زیست‌محیطی (ریام، فولچی و تصمیم‌گیری چند معیاره) و استفاده از تحلیل پوششی داده‌ها به‌عنوان یک رویکرد نوین با محوریت توسعه پایدار

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی پیشرفت، دانشگاه علم و صنعت

2 دانشکده مهندسی معدن، دانشگاه تهران

3 آزمایشگاه هیدروژئولوژی و محیط‌زیست معدنی، دانشکده مهندسی معدن، دانشگاه تهران

4 عضو هیئت علمی دانشکده مهندسی معدن و متالورژی دانشگاه یزد

10.29252/anm.2020.12620.1417

چکیده

روش‌های سنتی ارزیابی اثرات زیست‌محیطی مانند لئوپولد، فولچی و ماتریس ریام، تنها به تأثیرات مخرب طرح توجه نموده و کمتر مزایای اقتصادی و اجتماعی یک واحد صنعتی در آنها در نظر گرفته می‌شود. تحلیل پوششی داده ها به ‌عنوان یک رویکرد نوین در ارزیابی واحدهای صنعتی علاوه بر مسائل زیست‌محیطی، تأثیرات مثبت اقتصادی و اجتماعی طرح را نیز در نظر گرفته و یک ارزیابی جامع از واحد صنعتی مورد نظر ارائه می‌نماید. در پژوهش حاضر کارخانه زغال‌شویی البرز شرقی در شمال ایران به ‌عنوان مطالعه موردی در نظر گرفته ‌شده است و 19 فعالیت کارخانه و 11 مؤلفه زیست محیطی در ارزیابی اثرات زیست محیطی کارخانه مورد استفاده قرار گرفته‌اند. برای حل مسئله از دو رویکرد مرسوم تحلیل پوششی داده‌ها به نام‌هایCRS وVRS  استفاده شده است. نتایج نشان داد که مؤلفه‌های "بوم‌شناسی" و "چشم‌انداز منطقه" به ‌عنوان مؤلفه‌های دارای بیشترین خطر باید مورد توجه جدی قرار گیرند. همچنین رسم نمودار "پتانسیل بهبود" در روش تحلیل پوششی داده‌ها می‌تواند به‌ عنوان یک ابزار مؤثر در تعیین طرح‌های توسعه و بهبود فعالیت‌های کارخانه مؤثر باشد. استفاده از مدل CRS با رویکرد افزایش خروجی‌ها نشان داد که برخی فعالیت‌های کارخانه مانند "دمپ خوراک ورودی"، "پساب کارخانه" و "میزان مصرف آب در کارخانه" بیش‌ترین اختلاف را با حالت بهینه داشتند و در طرح‌های توسعه‌ای آینده این مؤلفه‌ها حتماً باید به‌ منظور اصلاح مدنظر قرار گیرند. در نهایت می‌توان گفت ارزیابی اثرات زیست‌محیطی کارخانه زغال‌شویی با رویکرد CRS خروجی محور در شرایط فعلی کارخانه به مفاهیم توسعه پایدار نزدیک‌تر است و می‌تواند ملاک عمل قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Inefficiencies of Traditional Environmental Impact Assessment Methods and Introducing Data Envelopment Analysis as a New Approach for EIA Based on Sustainable Development

نویسندگان [English]

  • Sajjad Mohebali 1
  • Soroush Maghsoudy 2 3
  • Faramarz Doulati Ardejani 4 3
1 School of Progress Engineering, Iran University of Science & Technology, Tehran, Iran
2 Dept. of Mining, University of Tehran, Tehran, Iran
3 Dept. of Mining, University of Tehran, Tehran, Iran
چکیده [English]

Summary
The main problem of traditional methods of environmental impact assessment is that in most of the existing algorithms and methods, such as Leopold matrix, Folchi method and RIAM matrix, the main attention is to the destructive effects of the proposed plan and the advantages of the plan are less noticeable. Data envelopment analysis (DEA) is a new approach to assessing the industrial units also considers the positive economic and social impacts of the project and provides a comprehensive assessment of the industrial unit. In the present study, the Alborz Sharghi Coal washing plant in northern Iran has been considered as a case study, and 19 plant activities and 11 environmental components have been used to evaluate the effects of the plant. To solve the problem, two commonly used DEA approaches, called BCC and CCR, have been used.
 
Introduction
The problem that always has been challenging is that the focus of the various EIA methods is on the environment. Although the economic and social issues are not considered. This approach makes this idea to the stakeholders that the environmental impact assessments are the obstacle in their way. however, in recent years, the concepts such as sustainable development and corporate social responsibility has convinced the industrial units that the simultaneous attention to economic issues, indigenous communities and the environment around the factory, can increase the economic benefits of that industrial unit in the long time. So, introducing a new approach to assessing the environmental impact of the units is essential. This approach can systematically conduct the EIA process and simultaneously addresses the economic and social issues of the project.
 
Methodology and Approaches
In the present study, the authors trying to use the Data Envelopment Analysis (DEA) method as an environmental impact assessment (EIA) against traditional methods such as Folchi and RIAM.  The case study is East Alborz Coal Washing Plant in the northern Iran. In this case, 19 impacting factors (IF) and 11 environmental components (EC) were considered. Also, two most popular approaches of the DEA, called CCR and BCC, have been compared and the output-oriented BCC method has been introduced as a new way for the environmental impact assessment with the sustainable development approach.
 
Results and Conclusions
The DEA method can reduce the uncertainty of the results and also make the final results more reliable due to there is no need to determine the weights of the impacting factors. Assessing the environmental impact of the plant by BCC and CCR approach in two modes of minimizing inputs and maximizing outputs showed that "ecology" and "landscape" components are two environmental components that are the least efficient and should be seriously considered. Moreover, it can be said that the EIA of the coal washing plant with the output-oriented BCC approach is closer to the concepts of sustainable development. The use of "Potential Improvement" method as one of the results of the DEA analysis, helps to examine the status of the impacting factors and can be used in the selection of more efficient development plans. The results of "Total Potential Improvement" showed that the BCC model (maximize-outputs) has a more rigorous evaluation of impacting factors and two factors of "input feed dump" and "water consumption" to achieve an efficient state should be reduced about 13%.

کلیدواژه‌ها [English]

  • Sustainable EIA
  • Alborz Sharghi Coal Washing Plant
  • EIA methods
  • data envelopment analysis

پیش‌بینی تأثیرات پروژه‌های توسعه‌ای یک ابزار کلیدی برای پیشرفت محیطی و اجتماعی و درنهایت توسعه پایدار به شمار می‌رود [1]. درواقع می‌توان گفت توسعه صنعتی و پایداری محیطی دو عنصر اساسی در برنامه‌ریزی توسعه است[2]. ارزیابی اثرات زیست‌محیطی کلید مدیریت تأثیرات زیست‌محیطی پروژه‌های صنعتی است که برای پیش‌بینی ارزیابی و کاهش تأثیرات محیطی و اجتماعی یک پروژه مورد استفاده قرار می‌گیرد و اغلب برای تأیید قانونی و تأمین مالی پروژه ضروری است و ازجمله ارزیابی‌های اولیه برای احداث یک واحد صنعتی است [3-4]. ارزیابی اثرات زیست‌محیطی  وسیع‌ترین ابزار سیاست‌گذاری زیست‌محیطی در جهان است که در تصمیم‌گیری پروژه‌های پیشنهادی و برنامه‌های استراتژیک استفاده می‌گردد. این ابزار با اینکه از زمان تدوینش (در سال ۱۹۶۹ در ایالات‌متحده) تاکنون بسیار بهبود یافته است اما هنوز با چالش‌های فراوانی روبروست[5] درواقع هدف برنامه EIA شناسایی تمام تأثیرات مثبت و منفی یک طرح صنعتی یا معدنی بر محیط‌زیست اطراف است. امروزه ابزار EIA برای کنترل و پیشگیری مسائل زیست‌محیطی فعالیت‌های صنعتی و معدنی به‌صورت گسترده مورداستفاده قرار می‌گیرد. درواقع هدف اصلی کارشناسان EIA بررسی جامع و همه‌جانبه تأثیرات یک فعالیت صنعتی و شناسایی اثرات مضر بلندمدت فعالیت مورد نظر برای کاهش دادن اثرات است[6].

[1]           Solbär, L., & Keskitalo, E. C. H. (2017). A Role for Authority Supervision in Impact Assessment ? Examples from Finnish EIA Reviews. Arctic Review, 8, 52–72.
[2]           Sereshki, F., & Saffari, A. (2016). Environmental impact assessment and sustainability level determination in cement plants (Case study: Shahrood cement plant). Iranian Journal of Earth Sciences, 8(2), 90–101.
[3]           Durden, J. M., Lallier, L. E., Murphy, K., Jaeckel, A., Gjerde, K., & Jones, D. O. B. (2018). Environmental Impact Assessment process for deep-sea mining in ‘the Area.’ Marine Policy, 87, 194–202.
[4]           Jay, S., Jones, C., Slinn, P., & Wood, C. (2007). Environmental impact assessment: Retrospect and prospect. Environmental Impact Assessment Review, 27(4), 287–300.
[5]           da Silva Dias, A. M., Fonseca, A., & Paglia, A. P. (2019). Technical quality of fauna monitoring programs in the environmental impact assessments of large mining projects in southeastern Brazil. Science of The Total Environment, 650, 216–223.
[6]           Saffari, A., Ataei, M., Sereshki, F., & Naderi, M. (2017). Environmental impact assessment (EIA) by using the Fuzzy Delphi Folchi (FDF) method (case study: Shahrood cement plant, Iran). Environment, Development and Sustainability, 21(2), 817–860.
[7]           Leopold, L. B., Clarke, F. E., & Hanshaw, B. B. (1971). A procedure for evaluating environmental impact (Vol. 28). US Dept. of the Interior.
[8]           Josimovic, B., Petric, J., & Milijic, S. (2014). The Use of the Leopold Matrix in Carrying Out the EIA for Wind Farms in Serbia. Energy and Environment Research, 4(1), 43.
[9]           Ashofteh, P.-S., Bozorg-Haddad, O., & Loáiciga, H. A. (2017). Multi-Criteria Environmental Impact Assessment of Alternative Irrigation Networks with an Adopted Matrix-Based Method. Water Resources Management, 31(3), 903–928.
[10]         Pastakia, C. M. R., & Jensen, A. (1998). The rapid impact assessment matrix (RIAM) for EIA. Environmental Impact Assessment Review, 18(5), 461–482.
[11]         Phillips, J. (2010). Evaluating the level and nature of sustainable development for a geothermal power plant. Renewable and Sustainable Energy Reviews, 14(8), 2414–2425.
[12]         Folchi, R. (2003). Environmental impact statement for mining with explosives: a quantitative method. Proceedings of the Annual Conference on Explosives and Blasting Technique, 2, 285–296. ISEE; 1999.
[13]         Mirmohammadi, M., Gholamnejad, J., Fattahpour, V., Seyedsadri, P., & Ghorbani, Y. (2009). Designing of an environmental assessment algorithm for surface mining projects. Journal of Environmental Management, 90(8), 2422–2435.
 [14]        Morgan, R. K. (2012). Environmental impact assessment: the state of the art. Impact Assessment and Project Appraisal, 30(1), 5–14.
[15]         Deng, X., Hu, Y., Deng, Y., & Mahadevan, S. (2014). Environmental impact assessment based on D numbers. Expert Systems with Applications, 41(2), 635–643.
[16]         Wang, N., & Wei, D. (2018). A modified D numbers methodology for environmental impact assessment. Technological and Economic Development of Economy, 24(2), 653–669.
[17]         Kaikkonen, L., Venesjärvi, R., Nygård, H., & Kuikka, S. (2018). Assessing the impacts of seabed mineral extraction in the deep sea and coastal marine environments: current methods and recommendations for environmental risk assessment. Marine Pollution Bulletin, 135, 1183–1197.
[18]         Carroll, A. B., & Shabana, K. M. (2010). The business case for corporate social responsibility: A review of concepts, research and practice. International Journal of Management Reviews, 12(1), 85–105.
[19]         Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society: Series A (General), 120(3), 253–281.
[20]         Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429–444.
[21]         Cook, W. D., & Seiford, L. M. (2009). Data envelopment analysis (DEA)–Thirty years on. European Journal of Operational Research, 192(1), 1–17.
[22]         Sueyoshi, T. (2016). DEA Environmental Assessment (I): Concepts and Methodologies. In Handbook of Operations Analytics Using Data Envelopment Analysis (pp. 413–444). Springer.
[23]         Sueyoshi, T., & Yuan, Y. (2016). DEA Environmental Assessment (II): a literature study. In Handbook of Operations Analytics Using Data Envelopment Analysis (pp. 445–481). Springer.
[24]         Ramanathan, R., Ramanathan, U., & Bentley, Y. (2018). The debate on flexibility of environmental regulations, innovation capabilities and financial performance–A novel use of DEA. Omega, 75, 131–138.
[25]         Wang, D., Li, S., & Sueyoshi, T. (2014). DEA environmental assessment on US Industrial sectors: Investment for improvement in operational and environmental performance to attain corporate sustainability. Energy Economics, 45, 254–267.
[26]         Sueyoshi, T., Goto, M., & Sugiyama, M. (2013). DEA window analysis for environmental assessment in a dynamic time shift: Performance assessment of US coal-fired power plants. Energy Economics, 40, 845–857.
[27]         Sueyoshi, T., & Wang, D. (2014). Sustainability development for supply chain management in US petroleum industry by DEA environmental assessment. Energy Economics, 46, 360–374.
[28]         Sueyoshi, T., & Yuan, Y. (2017). Social sustainability measured by intermediate approach for DEA environmental assessment: Chinese regional planning for economic development and pollution prevention. Energy Economics, 66, 154–166.
[29]         Lozano, S., Iribarren, D., Moreira, M. T., & Feijoo, G. (2009). The link between operational efficiency and environmental impacts: a joint application of life cycle assessment and data envelopment analysis. Science of the Total Environment, 407(5), 1744–1754.
[30]         Brans, J.-P., Vincke, P., & Mareschal, B. (1986). How to select and how to rank projects: The PROMETHEE method. European Journal of Operational Research, 24(2), 228–238.
[31]         Chang, D.-Y. (1996). Applications of the extent analysis method on fuzzy AHP. European Journal of Operational Research, 95(3), 649–655.
[32]         Junior, F. R. L., Osiro, L., & Carpinetti, L. C. R. (2014). A comparison between Fuzzy AHP and Fuzzy TOPSIS methods to supplier selection. Applied Soft Computing, 21, 194–209.
[33]         Li, H.-F., & Wang, J.-J. (2007). An improved ranking method for ELECTRE III. 2007 International Conference on Wireless Communications, Networking and Mobile Computing, 6659–6662. IEEE.
[34]         Ramanathan, R. (2001). A note on the use of the analytic hierarchy process for environmental impact assessment. Journal of Environmental Management, 63(1), 27–35. https://doi.org/10.1006/jema.2001.0455
[35]         Charnes, A., & Cooper, W. W. (1962). Programming with linear fractional functionals. Naval Research Logistics Quarterly, 9(3‐4), 181–186.
[36]         Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, 30(9), 1078–1092.
[37]         Andersen, P., & Petersen, N. C. (1993). A procedure for ranking efficient units in data envelopment analysis. Management Science, 39(10), 1261–1264.
[38]         Wu, W.-W. (2012). An integrated solution for benchmarking using DEA, gray entropy, and Borda count. The Service Industries Journal, 32(2), 321–335.
[39]         Shokri, B. J., Ramazi, H., Ardejani, F. D., & Moradzadeh, A. (2014). A statistical model to relate pyrite oxidation and oxygen transport within a coal waste pile: case study, Alborz Sharghi, northeast of Iran. Environmental Earth Sciences, 71(11), 4693–4702.
[40]         Shokri, B. J., Ardejani, F. D., & Ramazi, H. (2016). Environmental geochemistry and acid mine drainage evaluation of an abandoned coal waste pile at the Alborz-Sharghi coal washing plant, NE Iran. Natural Resources Research, 25(3), 347–363.
[41]         Ghaedrahmati, R., & Doulati Ardejani, F. (2012). Environmental impact assessment of coal washing plant (Alborz-Sharghi–Iran). Journal of Mining and Environment, 3(2), 69–77.
[42]         Mohebali, S., Maghsoudy, S., & Doulati Ardejani, F. (2019a). Coupled Multi-Criteria Decision Making Method (C-MCDM) as a New Approach for Environmental Impact Assessment (EIA) of Industrial Companies. Environmental Monitoring and Assessment (submitted).
[43]         Phillips, J. (2016). The Geocybernetic Assessment Matrix (GAM)—A new assessment tool for evaluating the level and nature of sustainability or unsustainability. Environmental Impact Assessment Review, 56, 88–101.
[44]         Mohebali, S., Maghsoudy, S., & Doulati Ardejani, F. (2019b). Using Dodgson, Kemeny, and Kohler Prioritization Strategies to integrate the Results of Different Environmental Impact Assessment methods. Iranian Journal of Mining Engineering (accepted). (in Persian)