رتبه‌بندی نمونه‌های ژئوشیمیایی به روش آنالیز ویژگی و روش‌های VIKOR جهت شناسایی مناطق مستعد کانی‌زایی

نوع مقاله : مقاله پژوهشی

نویسنده

گروه مهندسی معدن، دانشگاه صنعتی بیرجند

10.29252/anm.2020.12376.1401

چکیده

تجزیه نمونه‌های ژئوشیمیایی برای چندین عنصر و مرتبط بودن موقعیت و وسعت محدوده کانی‌زایی در یک منطقه اکتشافی با عناصر اصلی، ردیاب و نشانه، باعث برتری تعیین آنومالی مرکب (آنومالی چند عنصره) بر تک عنصره می‌شود. هدف این پژوهش معرفی روش‌های رتبه‌بندی برای تعیین آنومالی‌های ژئوشیمیایی مرکب است. برای این منظور از سه روش رتبه‌بندی آنالیز ویژگی، VIKOR و FDAHP-VIKOR و 365 نمونه ژئوشیمیایی برداشت شده در کانسار نقره- طلای اپی‌ترمال چاه‌زرد استفاده شده است. رتبه‌بندی داده‌ها در دو مد R و Q انجام شده است. نتایج رتبه‌بندی در مد R نشان دهنده معیار As به عنوان با اهمیت‌ترین عنصر مرتبط با کانی‌زایی و عناصر Au، Ag و Sb در جایگاه‌های بعدی در منطقه مورد مطالعه است. همچنین رتبه‌بندی نمونه‌های ژئوشیمیایی نشان می‌دهد که آنومالی به دست آمده از هر سه روش رتبه‌بندی مشابه آنومالی‌های تجمعی هستند. نتیجه به دست آمده با الگوریتم FDAHP-VIKOR به دلیل مطابقت موقعیت و وسعت محدوده آنومالی رتبه‌بندی با عناصر اصلی کانی‌زایی یعنی طلا و نقره و حد وسط بودن وسعت این محدوده نسبت به دو روش دیگر رتبه‌بندی به عنوان محدوده مستعد کانی‌زایی معرفی می‌گردد. محدوده‌ای به وسعت 42/0 کیلومتر مربع برای طراحی شبکه حفاری گمانه در فاز اکتشافی تفصیلی و محدوده‌ای کوچک‌تر داخل آن با وسعت 10/0 کیلومتر مربع برای طراحی شبکه حفاری چگال‌تر پیشنهاد می‌شود. بنابراین روش‌های رتبه‌بندی را می‌توان به عنوان روشی جدید برای تعیین آنومالی‌های مرکب معرفی کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Ranking of Geochemical Samples by Characteristic Analysis and VIKOR Methods for Identifying Mineralization Areas

نویسنده [English]

  • Hamid Geranian
Dept. of Mining, Birjand University of Technology, Birjand, Iran
چکیده [English]

Summary
The analysis of geochemical samples of several elements and the relevance of the location and extent of mineralization area in an exploration region with the mineralization, pathfinder, and indicator elements, make it a priority to determine the composite anomaly (multi-element anomaly) on a single-element anomaly. The purpose of this paper is to introduce ranking methods for the determination of the composite geochemical anomalies. For this purpose, three ranking methods namely that of characteristic analysis, VIKOR, and FDAHP-VIKOR methods are used. 365 geochemical samples have also been used which are taken in the epithermal Ag-Au Chah-Zard deposit. The ranking results in R mode indicating the criterion as the most important element related to mineralization area while Au, Ag and Sb elements take the following positions. Also, the ranking of geochemical samples shows that the area of 0.42 Km2 is considered to design a borehole drilling network in a detailed exploration phase.
 
Introduction
A multi-element anomaly is superior to a single element anomaly. Collective and multiplicative composite anomalies, integration, reduce dimension, clustering, and ranking methods are also used to determine the multi-element anomalies. The purpose of this paper is to introduce ranking methods for identifying mineral potential areas.
 
Methodology and Approaches
In this paper, the characteristic analysis method, which is a multivariate statistical method, and VIKOR algorithms, which is a multi-criteria decision-making method, are used to rank 365 geochemical samples of the Chah-Zard deposit area. The ranking of data is also done in two R and Q modes.
 
Results and Conclusions
Ranking results in R mode indicate that As criterion is the most important element related to mineralization and Au, Ag and Sb elements take the next positions. Also, the ranking of geochemical samples shows that the anomalies obtained from all three methods are similar to cumulative anomalies. The result obtained with the FDAHP-VIKOR algorithm is due to conformity of the location and extent of the anomaly area with the geochemical anomalies of the main mineralization elements, Ag and Au elements, and the median area of this range, as compared to the other two methods which are introduced as a potential mineralization area. An area of 0.42 Km2 is proposed for the design of a borehole drilling network in a detailed exploration phase and a smaller area of 0.10 Km2 within it is proposed for designing a density drilling network. Therefore, ranking methods can be introduced as a new method for determining composite anomalies.

کلیدواژه‌ها [English]

  • Characteristic Analysis
  • VIKOR Method
  • FDAHP-VIKOR Method
  • Mineral Potential Mapping
  • Chah-Zard Deposit

نمونه­برداری­های ژئوشیمیایی از محیط­های سنگی، خاکی و رسوبات آبراهه­ای یکی از مهم‌ترین ابزارهای شناسایی مواد معدنی در فازهای مختلف اکتشافی محسوب می‌شود. از آنجا که این نمونه­ها معمولاً برای تعداد زیادی عناصر به صورت هم‌زمان آنالیز می­شود؛ بنابراین تعیین آنومالی‌های ژئوشیمیایی مرکب (چند عنصره) بر تک عنصره برتری خواهد داشت. روش آنومالی‌های جمعی و یا ضربی، روش­های تلفیق، روش­های کاهش ابعاد، روش‌های خوشه‌بندی و روش‌های رتبه­بندی راه­حل­های تعیین آنومالی­های مرکب هستند [1-3]. در روش آنومالی‌های مرکب با جمع مقادیر استاندارد شده، می­توان آنومالی‌های جمعی و با ضرب مقادیر خام، می‌توان آنومالی‌های ضربی را به دست آورد. این روش‌ها بیشتر برای تعیین هاله‌های ژئوشیمیایی مرکب استفاده شده­اند [4]. در روش‌های تلفیق کلیه لایه‌های اطلاعاتی، بر اساس مبنای الگوریتم‌های داده-محور ( از قبیل شبکه‌های عصبی مصنوعی، اوزان شاهد، رگرسیون لجستیکی، ماشین بردار پشتیبان و طبقه‌بندی بیزین) و یا دانش-محور (از قبیل شاخص همپوشانی، منطق فازی، فرآیند تحلیل سلسله مراتبی و تکنیک اولویت‌بندی با شباهت به راه‌حل ایده‌آل) به یک لایه یا نقشه تبدیل می­شود [5-7]. الگوریتم‌های داده- محور برای مناطق دارای فعالیت­های اکتشافی بالا و الگوریتم‌های دانش- محور برای مناطقی با اطلاعات اکتشافی کم کاربرد دارند [6].

[1]           Zhizhong, C., Xie Xuejing, X., Wensheng, Y., Jizhou, F., Qin, Z., and F., Jindong (2014). Multi-element geochemical mapping in Southern China. Journal of Geochemical Exploration 139, 183–192.
[2]           Hosseini-Dinani, H., Aftabi, A., Esmaeili, A., and M., Rabbani (2015). Composite soil-geochemical halos delineating carbonate-hosted zinc–lead– barium mineralization in the Irankuh district, Isfahan, west-central Iran. Journal of Geochemical Exploration 156, 114–130.
[3]           Ellefsen, K.J., and D.B., Smith (2016). Manual hierarchical clustering of regional geochemical data using a Bayesian finite mixture model. Applied Geochemistry 75, 200–210.
[4]           Beus, A.A., and S.V., Grigorian (1977). Geochemical Exploration Methods for Mineral Deposits. Published by Applied Publishing Ltd, 276 p.
[5]           Yousefi, M., A. Kamkar Rohani (2010). Principles of Mineral Potential Modeling Methods. Amirkabir University, 226 p, (In Persian).
[6]           Carranza, E.J.M. (2009). Geochemical Anomaly and Mineral Prospectivity Mapping in GIS. Elsevier, Netherlands, 365 p.
[7]           Carranza, E.J.M. (2010). Mapping of anomalies in continuous and discrete fields of stream sediment geochemical landscapes, Geochemistry: Exploration, Environment, Analysis 10, 171-187.
[8]           Yang, J., and Q. Cheng (2015). A comparative study of independent component analysis with principal component analysis in geological objects identification, Part I: Simulations. Journal of Geochemical Exploration 149, 127–135.
[9]           Yang, J., and Q. Cheng (2015). A comparative study of independent component analysis with principal component analysis in geological objects identification. Part II: A case study of Pinghe District, Fujian, China. Journal of Geochemical Exploration 149, 136–146.
[10]         Geranian, H. (2018). Application of clustering methods in determining the Multi-elements anomalies in regional geochemical exploration; A Case study: 1/100000 Kordagan Sheet, South Khorasan Province. Iranian Journal of Mining Engineering 12(37), 81-94, (In Persian).
[11]         Aggarwal, C.C., and C.K., Reddy (2014). Data Clustering: Algorithms and Applications. CRC Press, 652 p.
[12]         Alvo, M., and P.L.H., Yu (2014). Statistical Methods for Ranking Data. Springer, New York, 279 p.
[13]         McCammon, R. B., Botbol, J. M., Sinding-Larsen, R., and R.W., Bowen (1983). Characteristic Analysis--1981: Final Program and a Possible Discovery. Mathematical Geology 15, 59-83.
[14]         He, J., Ding, W., Zhang, J., Li, A., Zhao, W., and P., Dai (2016). Logging identification and characteristic analysis of marine-continental transitional organic-rich shale in the Carboniferous-Permian strata, Bohai Bay Basin. Marine and Petroleum Geology 70, 273-293.
[15]         Bridges, N.J., Hanley, J.T., and R.B., McCammon (1985). PREPRO: A Computer program for encoding regional exploration data for use in characteristic analysis. Mathematical Geology 11(5), 513-519.
[16]         Maghsoudi Moud, F. (2016). Comparing operation of TOPSIS and VIKOR methods in Cu mineralization potential mapping at central part of Kerman metallogenic arc. MS Thesis, Isfahan University of Technology, (In Persian).
[17]         Hayati, M., Rajabzadeh, R., and M., Darabi (2015). Determination of Optimal Block Size in Angouran Mine Using VIKOR Method. J. Mater. Environ. Sci. 6(11), 3236-3244.
[18]         Abedi, M., Mohammadi, R., Norouzi, G.H., and M.S., Mir Mohammadi (2016). A comprehensive VIKOR method for integration of various exploratory data in mineral potential mapping.  Arabian Journal of Geoscience 9:482.
[19]         Ghanbari, E., and A., Azadeh Shakery (2019).  ERR. Rank: An algorithm based on learning to rank for direct optimization of Expected Reciprocal Rank, Applied Intelligence 49, 1185-1199.
[20]         Ishizaka, A., and P., Nemery (2013). Multi-criteria Decision Analysis: Methods and Software. Wiley, 310 p.
[21]         Ghanbari, E., and A., Shakery (2016). A new algorithm based on ensemble learning for learning to rank in information retrieval. Journal of Information and Communication Technology 7(25), 67-86, (In Persian).
[22]         Botbol, J. M. (1971). An application of characteristic analysis to mineral exploration: Proe. 9th Ins. Syra. on Techniques for Decision-Making in the Mineral Industry, Special Vol. 12, Canadian Inst. of Mineral and Metallurgy, Montreal, Canada, 92-99.
[23]         Pan, G., and D.P., Harris (1992). Decomposed and weighted characteristic analysis for the quantitative estimation of mineral resources. Mathematical Geology 24(7), 807-823.
[24]         Opricovic, S., and G.H., Tzeng (2004). The Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European Journal of Operational Research 156 (2), 445–455.
[25]         Opricovic, S., and G.H., Tzeng (2007). Extended VIKOR method in comparison with out ranking methods, European Journal of Operational Research 178, 514–529.
[26]         Jahan, A., Mustapha, F., Yousof Ismail. M., Sapuan. S.M., and M., Bahraminasab (2011).  A comprehensive VIKOR method for material selection. Material Decision 32, 1215–1221.
[27]         Mardani, A., Kazimieras Zavadskas, E., Govindan, K., Amat Senin, A., and A., Jusoh (2016). VIKOR Technique: A Systematic Review of the State-of-the-Art Literature on Methodologies and Applications, Sustainability 37, 1-38.
[28]         Ataei, M. (2010). Multi criteria decision making, Shahrood University Press, 323 p., (In Persian).
[29] Liu, Y.C., and C.S., Chen (2007). A new approach for application of rock mass classification on rock slope stability assessment. Engineering Geology 89(1), 129-143.
[30]         Pooya, A., and A., Alizadeh Zoeram (2015). Solving the supplier selection problem using a model based On Fdahp-Vikor combined approach. Organizational Resources Management Researchs 4 (4), 23-48, (In Persian).
[31]         Alguliyev, R.M., Aliguliyev, R.M., and R.S., Mahmudova (2015). Multicriteria personnel selection by the modified fuzzy VIKOR method.  The Scientific World Journal 2015, 1-16.
[32]         Zhang, N., and G., Wei (2013). Extension of VIKOR method for decision making problem based on hesitant fuzzy set. Applied Mathematical Modelling 37, 4938–4947.
[33]         Luo, X., and X., Wang (2017).  Extended VIKOR method for intuitionistic fuzzy multiattribute Decision-Making based on a new distance measure. Mathematical Problems in Engineering 2017, 1-16.
[34]         Sayadi, M.K., Heydari, M., and K., Shahanaghi (2009). Extension of VIKOR method for decision making problem with interval numbers.  Applied Mathematical Modelling 33, 2257–2262.
[35]         Ataei, M. (2012). Investigation of exploration properties and determination of promising areas of mineralization of gold in Chah-Zard deposit, Yazd province. M.S. Thiess, Isfahan University of Technology, (In Persian).
[36]         Persian Gold Co. (2008). Final report of exploration operations in Ag-Au Chah-Zard deposit. 96 p., (In Persian).
[37]         Kouhestani, H., Ghaderi, M., Zaw, K., Meffre, S., and M., Hashem Emami (2012). Geological setting and timing of the Chah Zard breccia-hosted epithermal gold–silver deposit in the Tethyan belt of Iran.  Miner Deposita 47, 425–440.
[38]         Kouhestani, H. (2011). Geology, alteration, isotope geochemistry and origin of Chah Zard Ag-Au deposit, SW Yazd. Ph D. Thiess, Tarbiat Modares University, (In Persian).
[39]         Wang, L., Qin, K.Z., Song, G.X., and G.M., Li (2019). A review of intermediate sulfidation epithermal deposits and subclassification, Ore Geology Reviews 107, 434-456.
[40]         Pawlowsky-Glahn, V., Egozcue, J.J., and R., Tolosana-Delgado (2015). Modeling and Analysis of Compositional Data. John Wiley & Sons, United Kingdom, 275 p