مدل‌سازی همبستگی متقابل سه‌بعدی داده‌های مغناطیس‌سنجی معدن شواز، یزد، ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی معدن و متالورژی، دانشگاه یزد، یزد، ایران

چکیده

در این مقاله به معرفی روش همبستگی متقابل سه‌بعدی برای تفسیر داده‌های مغناطیس­سنجی و گرادیان قائم آن­ها پرداخته‌شده است که روشی بسیار سریع برای مدل‌سازی داده‌ها در فضای احتمال، تشخیص مناطق بی‌هنجاری و نحوه گسترش پیرامونی و عمقی توده‌های مدفون است. در این مقاله برای نخستین بار و باهدف مدل‌سازی توده کانساری، از این روش در محیط معدنی استفاده‌شده است. در این روش ابتدا زمین به یک شبکه منظم سه‌بعدی تقسیم­بندی شده، سپس مقدار همبستگی هر گره­ی شبکه نسبت به‌کل شبکه برداشت محاسبه‌شده و در انتها توموگرام این مقادیر رسم می‌شود. مناطق با بیشترین مقدار قدر مطلق، محتمل‌ترین محل برای وجود توده­های مدفون می‌باشند. باید توجه داشت که نتایج در محدوده [1+ 1-] قرار دارند که بیانگر فزونی یا کسری مغناطش یا خودپذیری مغناطیسی توده­ی بی‌هنجاری نسبت به مغناطش یا خودپذیری مغناطیسی توده میزبان است. این روش بر روی دو مدل مصنوعی اعمال شد. مدل اول ساده‌ترین مدل و شامل یک مکعب و دومین مدل به‌منظور سنجش قدرت تفکیک عرضی روش، از دو مکعب با مقادیر متفاوت خودپذیری مغناطیسی، تشکیل‌شده است. هر دو مدل در محیطی همگن قرار داشته و مقدار مغناطیس بازماند در توده­ها صفر در نظر گرفته‌شده است. نتایج نشان‌دهنده­ی دقت قابل‌قبول روش در تخمین عمق و گستره توده­های مدفون است. سپس این روش بر روی داده­های برداشت مغناطیس­سنجی معدن شواز و گرادیان قائم آن­ها اعمال شد. نتایج حاصل با مدل‌سازی پیشین صورت گرفته و اطلاعات حاصل از گمانه­های موجود در محدوده، مقایسه گردیده و درنهایت عمق و شکل تقریبی توده مشخص گردید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

3D Cross-Correlation Modelling of Shavvaz mine’s Magnetometry data, Yazd, Iran

نویسندگان [English]

  • Iman Ahmadi
  • َAhmad Ghorbani
  • Abdolhamid Ansari
  • Amin Hussein morshedy
Mining and Metallurgical Eng. Dept., Yazd University
چکیده [English]

Summary
The paper introduces the 3D Cross-Correlation for modeling of total magnetic intensity and its vertical gradient which is the fast way to model data, detect anomalies and estimate their depths and locations. In this approach first, we divide the subsurface space into a 3D regular grid, after computing the correlation value for each node of the grid, these values are plotted. It is noted that the results fall in the range [-1, +1] that represents the mass excess or mass deficit of magnetization (or susceptibility) relative to the magnetization (or susceptibility) of the host volume. This approach is applied to 2 synthetic models. The results show acceptable accuracy of this method in depth estimation and expansion of buried masses. After this method is verified and validated, it will be applied to the Shavvaz mine's total magnetic intensity (TMI) data of Yazd and its vertical gradient, and the results will be discussed.
 
Introduction
There are two major approaches for 3D inversion of magnetic data: (i) direct inversion of the density contrast using a linear or nonlinear algorithm, and (ii) modeling of the source distribution in a purely probabilistic sense, in which the results are equivalent physical parameters between +1 and -1. Direct inversion has an inherent problem called Non-uniqueness of solutions and requires a lot of computer memory because of the number of model parameters and data.
In this paper, we introduce and evaluate the 3D Cross-Correlation (CC) method for 3D modeling of magnetic data (or its vertical gradient). This method was applied to 2 different synthetic models and its strengths in modeling of total magnetic field anomaly and vertical magnetic gradient data are discussed and finally, the method was applied to the Shavvaz mine's TMI data and its vertical gradient.
 
Methodology and Approaches
The 3D cross-correlation approach is a method for modeling the magnetic data (or its vertical gradient) without any external constraints and any linearization.
 
Results and Conclusions
The results of synthetic examples showed the high accuracy of the CC method in determining the shape and depth of the buried mass. This method is simple and easy to run and there is no need for prior information. In the end, this method was applied to the Shavvaz mine's TMI data and its vertical gradient. These results showed that orebody continues deeper than 40m (estimated from the previous modelling).

کلیدواژه‌ها [English]

  • Shavvaz
  • Cross-Correlation
  • Magnetometry
  • Depth estimation
  • Modeling

امروزه اکتشاف به روش مغناطیس­سنجی، نقش مهم و گسترده­ای در بسیاری از شاخه‌های علوم زمین نظیر مطالعات تکتونیک، اکتشاف معدنی، اکتشاف میدان‌های گازی و نفتی، مسائل محیط زیستی دارد. اولین هدف در برداشت مغناطیس­سنجی، تحقیق در مورد زمین‌شناسی زیرسطحی ساختارهای مدفون در اثر خواص مغناطیسی ساختارهای سنگی زیرسطحی است. برای افزودن جزئیات بیشتر و داشتن دیدی بهتر جهت تفسیر داده‌های مغناطیس‌سنجی، می‌توان از گرادیان داده‌ها نیز استفاده نمود که می‌تواند به شکل گرادیان افقی، قائم یا مجموع باشد. گرادیان قائم داده‌ها معمولاً با اعمال روش فوریه یا سایر روش‌ها بر روی داده‌های مغناطیس سنجی شبکه­بندی شده به دست می‌آید] 1[. در کارهای پیشین صورت گرفته نظیر مطالعات گمی و همکاران (1997) و دال و همکاران (2006)، به‌تفصیل در مورد مزایا و معایب استفاده از گرادیان داده‌ها صحبت شده است] 2، 3[.

[1]                 Gamey, T. J., Doll, W. E., Beard, L. P., & Bell, D. T. (2002). Airborne vertical magnetic gradient for UXO detection. In Symposium on the Application of Geophysics to Engineering and Environmental Problems.
[2]                 Gamey, T. J., Holladay, J. S., Mahler, R. (1997). Airborne measured analytic signal for UXO detection. In Symposium on the Application of Geophysics to Engineering and Environmental Problems.
[3]                 Doll, W. E., Gamey, T. J., Beard, L. P., & Bell, D. T. (2006). Airborne vertical magnetic gradient for near-surface applications. The Leading Edge, 25(1), 50–53.
[4]                 Rezaie M., Moradzadeh A., Kalate A.N., Aghajani H., Kahoo A.R., Moazam S. (2017). 3D modelling of Trompsburg Complex (in South Africa) using 3D focusing inversion of gravity data. Journal of African Earth Sciences, 130, 1–7.
[5]                 Mauriello, P., & Patella, D. (1999a). Principles of probability tomography for natural-source electromagnetic induction fields. Geophysics, 64(5), 1403–1417.
[6]                 Mauriello, P., & Patella, D. (1999b). Resistivity anomaly imaging by probability tomography. GeophysicalProspecting, 47(3), 411–429.
[7]                 Mauriello, P., & Patella, D. (2001a). Localization of maximum-depth gravity anomaly sources by a distribution of equivalent point masses. Geophysics, 66(5), 1431–1437.
[8]                 Patella, D. (1997). Self-potential global tomography including topographic effects. GeophysicalProspecting, 45(5), 843–863.
[9]                 Mauriello, P., & Patella, D. (2001b). Gravity probability tomography: a new tool for buried mass distribution imaging. GeophysicalProspecting, 49(1), 1–12.
[10]              Mauriello, P., & Patella, D. (2005). Localization of magnetic sources underground by a data adaptive tomographic scanner. ArXivPreprintPhysics/0511192.
[11]              Mauriello, P., & Patella, D. (2008). Localization of magnetic sources underground by a probability tomography approach. ProgressIn Electromagnetics Research M, 3(November 2005), 27–56. http://www.jpier.org/PIERM/pier.php? paper= 08050504.
[12]              Chianese, D., & Lapenna, V. (2007). Magnetic probability tomography for environmental purposes: test measurements and field applications. Journal of Geophysics and Engineering, 4(1), 63–74.
[13]              Alaia, R., Patella, D., & Mauriello, P. (2009). Imaging multipole self-potential sources by 3D probability tomography. Progress In Electromagnetics Research, 14, 311–339.
[14]              Guo, L., Meng, X., & Shi, L. (2011). 3D correlation imaging of the vertical gradient of gravity data. Journalof Geophysics and Engineering, 8(1), 6–12.
[15]              Guo, L., Shi, L., & Meng, X. (2011). 3D correlation imaging of magnetic total field anomaly and its vertical gradient. Journal of Geophysics and Engineering, 8(2), 287.
[16]              Ghalenoee, M. H., (2018). Inversion of potential field data, a method for modelling of bodies’s geometric and geological formations. PhD dissertation. Yazd University, Iran.