بررسی پروفیل سرعت صعود حباب در سلول فلوتاسیون ستونی با شبیه‌سازی دینامیک سیالات محاسباتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی معدن، نفت و ژئوفیزیک، دانشگاه صنعتی شاهرود، شاهرود، ایران

2 دانشکده مهندسی مکانیک، دانشگاه آزاد اسلامی واحد کاشان، کاشان، ایران

چکیده

مؤلفه‌های هیدرودینامیکی در فلوتاسیون ستونی نقش مهمی در عملکرد و کارایی فرآیند دارند. دینامیک سیالات محاسباتی (CFD) به‌عنوان یک روش عددی می‌تواند در تحلیل و پیش‌بینی مؤلفه‌های جریان راهگشا باشد. در این مقاله پروفیل سرعت صعود تک حباب در ستون فلوتاسیون به‌صورت دوفازی و با روش CFD مطالعه شده است. شبیه‌سازی‌ها در نرم‌افزار فلوئنت و با به‌کارگیری مدل دوفازی VOF انجام شدند. میدان محاسباتی، ستونی با مقطع مربع به ضلع 10 سانتی‌متر و ارتفاع 100 سانتی‌متر بود که هوا به‌وسیله یک حباب‌ساز داخلی از قسمت پایین ستون به‌صورت تک حباب وارد می‌شد و به‌منظور کاهش حجم محاسبات و ساده‌سازی مسئله ستون ابتدا پر از آب در نظر گرفته شد. برای اعتبارسنجی نتایج شبیه‌سازی، یک سری آزمایش تجربی انجام شد که طی آن از تصویربرداری برای ثبت مؤلفه‌های هیدرودینامیکی ازجمله دبی هوای ورودی، اندازه‌گیری قطر حباب، سرعت صعود حباب و ماندگی گاز استفاده شد. مقایسه‌ی الگوی سرعت صعود حباب در آزمایش‌های تجربی با مطالعات سایرین مؤید صحت نتایج تجربی است. همچنین نتایج شبیه‌سازی نشان داد که CFD به‌خوبی می‌تواند الگوی کلی پروفیل سرعت صعود حباب و مقدار آن را در ستون فلوتاسیون را با اختلاف کمتر از 5 درصد نسبت به مقادیر تجربی پیش‌بینی کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of bubble velocity profile in the column flotation cell by computational fluid dynamics simulation

نویسندگان [English]

  • Narjes Khorasanizadeh 1
  • Mohammad Karamoozian 1
  • Hossein Nouri 2
1 Shahrood University of Technology
2 Kashan Azad Unicersity
چکیده [English]

Summary
Hydrodynamic components play an important role in the process performance of column flotation. CFD as a numerical method can help analyze and predict flow components. In this paper, the single-bubble rising velocity profile in the flotation column is studied in two-phase with CFD. Simulations have been performed in Fluent software using a two-phase VOF model. A computational column with a square cross-section of 10 cm and a height of 100 cm has been considered. The air is taken in by a single bubble from the bottom of the column by an internal sparger. To validate the simulation results, a series of experiments were performed exactly according to the mentioned conditions, while imaging was used to record hydrodynamic components such as inlet airflow, bubble diameter, and bubble rise velocity, etc. The experimental results are consistent with previous observations that studies by others. Also, the results of the simulations performed are qualitatively and quantitatively consistent with the experimental results. The results show that CFD simulation can well predict the rise of the bubble and its related parameters in the flotation column, including the bubble rise rate with a difference of less than 5% compared to the experimental values. In this paper, the single-bubble rising velocity profile in the flotation column is studied in two-phase with CFD.
 
Introduction
This article consisted of two parts: the experimental tests and the CFD simulations. The authors tried to present a set of setting to simulate the bubble rising velocity as well as possible by their facilities.
 
Methodology and Approaches
Simulations have been performed in Fluent software using a two-phase VOF model. A computational column with a square cross-section of 10 cm and a height of 100 cm has been considered. The air is taken in by a single bubble from the bottom of the column by an internal sparger. To validate the simulation results, a series of experiments were performed exactly according to the mentioned conditions, while imaging was used to record hydrodynamic components.
 
Results and Conclusions
The results showed that CFD simulation can well predict the rise of the bubble and its related parameters in the flotation column, including the bubble rise rate with a difference of less than 5% compared to the experimental values.

کلیدواژه‌ها [English]

  • Multiphase simulation
  • Column flotation
  • Rising velocity
  • Bubble
  • CFD

با کاهش عیار مواد معدنی در عصر حاضر، استفاده​ی حداکثری از منابع و معادن طبیعی اهمیت زیادی پیداکرده و این مهم باعث شده که معدنکاری و صنایع وابسته به آن جایگاه ویژه​ای را در اقتصاد به خود اختصاص دهد؛ به همین دلیل افزایش کارایی عملیات فرآوری و بهینه​سازی سیستم‌های مرتبط با آن از اهمیت ویژه​ای برخوردار است. شناخت مکانیسم و نحوه​ی انجام فرآیندهای فیزیکی در ارتقاء عملکرد یک سیستم مؤثر است. علم سیالات و به‌طور خاص "دینامیک سیالات محاسباتی" ازجمله ابزارهایی است که در این راستا می‌تواند به کار گرفته شود. تاکنون نمونه​هایی از شبیه​سازی CFD بر روی تجهیزات فرآوری با رویکردها و اهداف مختلف انجام‌شده است [1]. در جدول 1 عناوین و خلاصه​ای از مطالعات و بررسی​های انجام‌شده با این روش روی ناحیه​ی جمع​آوری ستون فلوتاسیون آمده است.

در اغلب پژوهش​های انجام‌شده تلاش شده تا کلیت عملیات فلوتاسیون بررسی شود؛ حال‌آنکه با توجه به نقش ویژه​ی حباب​ها در شناورسازی ذرات و حمل آن​ها به فاز کف و به‌منظور درک بهتر تأثیر مؤلفه‌های هیدرودینامیکی لازم است بررسی​های بیشتری بر روی آن​ها انجام شود. از طرفی برای دستیابی به نتیجه​ی مناسب در شبیه​سازی، ابتدا فهم کامل فیزیک حاکم بر پدیده و سپس انتخاب مدل ​فیزیکی مناسب (مدل چند فازی، مدل آشفتگی و...) جهت اعمال در ابزار شبیه​سازی (به‌عنوان‌مثال نرم​افزار فلوئنت) لازم است. این پژوهش با توجه به اهمیت انکارناپذیر ارتقاء کارایی بخش فلوتاسیون به‌عنوان کارآمدترین واحد کانه‌آرایی و باهدف هم‌افزایی علوم مرتبط با فلوتاسیون در دو بخش تجربی و شبیه​سازی تعریف و انجام‌شده است. به‌منظور ساده​سازی مسئله در گام اول به شبیه​سازی تک حباب پرداخته‌شده تا بعد از اعتبارسنجی نتیجه و اطمینان از صحت مدل​های فیزیکی اعمال‌شده و روش حلی که به کار گرفته‌شده است، بتوان با اطمینان خاطر بیشتری شبیه​سازی​ها را به شرایط آزمایش​های تجربی و فلوتاسیون واقعی نزدیک کرد. در ادامه ابتدا آزمایش‌های تجربی و جزییات و نحوه انجام آن و سپس روش بکار گرفته‌شده در شبیه​سازی و مراحل انجام آن توضیح داده‌شده است. درنهایت نتایج تجربی و شبیه​سازی ارائه‌شده و با مقایسه​ی این دو، جمع​بندی نهایی انجام‌گرفته است.

 

[1]                 Wang, G., Ge, L., Mitra, S., M. Evans, G., Joshi, J., & Chen, S. (2018). A review of CFD modelling studies on the fl otation process. 127, 153–177.
[2]                 Deng, H., Mehta, R., & Warren, G. (1996). Numerical modeling of flows in flotation columns. Int J Miner Process, 48(1), 61-72.
[3]                 Xia, Y., Peng, F., & Wolfe, E. (2006). CFD simulation of alleviation of fluid back mixing by baffles in bubble column. Minerals Eng, 19(9), 925-37.
[4]                 Chakraborty, D., Guha, M., & Banerjee, P. (2009). CFD simulation on influence of superficial gasvelocity, column size, sparger arrangement, and taper angle on hydrodynamics of the column flotation cell. Chem Eng Commun, 9(196), 1102-1116.
[5]                 Nadeem, M., Ahmed, J., Chughtai, I., & Ullah, A. (2009). CFD-based estimation of collision probabilities between fine particles and bubbles having intermediate reynolds number. Nucleus, 46(3), 153-159.
[6]                 Koh, P., & Schwarz, M. (2009). CFD models of microcel and jameson flotation cells. Seventh international conference on CFD in the minerals and process industries, CSIRO. Melbourne, Australia.
[7]                 Rehman, A., Nadeem, M., Zaman, M., & Nadeem, B. (2011). Effect of various baffle designs on air holdup and mixing in a flotation column using CFD. 8th International Bhurban Conference on Applied Sciences & Technology. Islamabad, Pakistan.
[8]                 Sahbaz, O. E. (2012). Determination of turbulence and upper size limit in jameson flotation cell by the use of computational fluid dynamic modelling Physicochem. 48(533–544).
[9]                 Yan, X. L. (2012). A single-phase turbulent flow numerical simulation of a cyclonic-static micro bubble flotation column. Int. J. Miner. Process, 22, 95-100.
[10]              Gong, M. L. (2015). Numerical analysis of flow in a highly efficient flotation column. Asia-Pac. J. Chem. Eng, 10, 84–95.
[11]              Wang, A. Y. (2015). E ff ect of cone angles on single-phase fl ow of a laboratory cyclonic-static micro-bubble fl otation column: PIV measurement and CFD simulations. Sep. Purif. Technol, 149, 308–314.
[12]              Sarhan, A., Naser, J., & Brooks, G. (2016). CFD simulation on influence of suspended solid particles on bubbles' coalescence rate in flotation cell. Int J Miner Process, 146, 54-64.
[13]              Cai, X. C. (2016). CFD simulation of oil–water separation characteristics in a compact fl otation unit by population balance modeling. J. Disper. Sci. Technol, 38, 1435–1447.
[14]              Cai, X. C. (2017). Numerical studies on dynamic character istics of oil-water separation in loop fl otation column using a population balance model. Sep. Purif. Technol, 176, 134–144.
[15]              Sarhan, A. N. (2017a). Bubbly fl ow with particle attachment and detachment – a multi-phase CFD study. Sep. Sci. Technol, 53, 181–197.
[16]              Sarhan, A. N. (2017b). CFD analysis of solid particles properties effect in three-phase flotation column. Sep. Purif. Technol, 185, 1–9.
[17]              Nasirimoghaddam, S. M., Mohebbi, A., Karimi, M., & Yarahmadi, M. R. (2017). Estimating column flotation rate constant by computational fluid dynamics. The 8th national conference on CFD applications in chemical and petrolum industries.
[18]              Zhang, M. L. (2017). A CFD study of the fl ow characteristics in a packed fl otation column: implications for fl otation recovery improvement. Int. J. Miner. Process, 159, 60–68.
[19]              Wang, G. E. (2017a). Bubble-particle detachment in a turbulent vortex II—computational methods. 102, 58–67.
[20]              Wang, L. W. (2017b). A numerical study on efficient recovery of fine-grained minerals with vortex generators in pipe flow unit of acyclonic-static micro bubble flotation column. 158, 304–313.
[21]              Farzanegan, A., Khorasanizadeh, N., Sheikhzadeh, G., & Khorasanizadeh, H. (2017). Laboratory and CFD investigations of the two-phase flow behavior in flotation columns equipped with vertical baffle. International Journal of Mineral Processing, 17, 71-83.
[22]              Yang, G., Guo, K., & Wang, T. (2017). Numerical simulation of the bubble column at elevated pressure with a CFD-PBM coupled model. Chemical Engineering Science.
[23]              Finch, J. (1990). Cloumn Flotation. New York: Pergamon Press.
[24]              Khorasanizadeh, N, Farzanegan, A., Sheikhzadeh, G., & Khorasanizadeh, H. (2015). investigations of the two-phase flow behavior in flotation columns equipped with vertical baffle by CFD. International Journal of Mining Engineering, 9(25), 71-83.
[25]              Brennen, C. E. (2005). Fundamentals of Multiphase Flows. Cambridge University Press.
[26]              Cano-Lozano, J.C, Bolaños-Jiménez, R, Gutiérrez-Montes, C, Martínez-Bazán, C. (2015). The use of Volume of Fluid technique to analyze multiphase flows: Specific case of bubble rising in still liquids, Appl. Math. Model. 39, 3290–3305.
[27]              Ansys Fluent 2015 Tuturial.
[28]              van der Pijl, S. P. (2005). Computation of Bubbly Flows with a Mass-Conserving Level-Set Method. TU Delft.
[29]              Vargaftik, N. (1975). Handbook of Physical Properties of Liquids and Gases. Springer.
[30]              Clift, R. G. (1978). Bubbles, drops and particles. Academic Press.
[31]              Sam, A., Gomez, C. O., Finch, J. A. (1996). Axial velocity profiles of single bubbles in water/frother solutions. International Journal of Mineral Processing. 47, 177-196.