[1] Ciampalini, A., Garfagnoli, F., Antonielli, B., Moretti, S. and Righini, G. (2013). Remote sensing techniques using Landsat ETM+ applied to the detection of iron ore deposits in Western Africa. Arabian Journal of Geosciences, 6(11), pp.4529-4546.
[2] Gupta, R.P. (2003). Remote Sensing Geology. Heidelberg, Springer.
[3] Honarmand, M., Ranjbar, H. and Shahabpour, J. (2011). Application of Spectral Analysis in Mapping Hydrothermal Alteration of the Northwestern Part of the Kerman Cenozoic Magmatic Arc, Iran. Journal of Sciences, Islamic Republic of Iran, Vol. 22(3), pp. 221-238.
[4] Ranjbar, H. and Honarmand, M. (2004). Integration and analysis of airborne geophysical and ETM+ data for exploration of porphyry type deposits in the Central Iranian Volcanic Belt using fuzzy classification. International Journal of Remote Sensing, 25(21), pp.4729-4741.
[5] Pirajno, F. (2009). Hydrothermal processes associated with meteorite impacts. In Hydrothermal processes and mineral systems (pp. 1097-1130). Springer, Dordrecht.
[6] Amos, B.J. and Greenbaum, D. (1989). Alteration detection using TM imagery the effects of supergene weathering in an arid climate. International Journal of Remote Sensing, 10(3), pp.515-527.
[7] Drury, S.A. and Hunt, G.A. (1989). Geological uses of remotely-sensed reflected and emitted data of lateritized Archaean terrain in Western Australia. International Journal of Remote Sensing, 10(3), pp.475-497.
[8] Richards, J.P. (2011). Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geology Reviews, 40(1), pp.1-26.
[9] Richards, J.P. (2005). Cumulative factors in the generation of giant calc-alkaline porphyry Cu deposits. Super porphyry copper and gold deposits: A global perspective, 1, pp.7-25.
[10] Pour, A.B., Hashim, M. and van Genderen, J. (2013). Detection of hydrothermal alteration zones in a tropical region using satellite remote sensing data: Bau goldfield, Sarawak, Malaysia. Ore Geology Reviews, 54, pp.181-196.
[11] Issakhanian V., Espahbod M.R., Nemat L., "Geological investigation of Radiometric material in the vicinity of the Neyshabur turquoise mine", Geol. Surv. Iran, (1973) 16 p.
[12] Espahbod M.R., "Le district minier de la mine de turquoise de kuh-e-madan (Neychabur, Iran):mineralisationsetcaracferesgeologiques, ge’ochimiques et me’talloge’niques de l’uranium, du cuivre et du molybdeue", Theses (Diplome de docteur-ingenieur), Universite de Nancy I. Nancy,France (1976).
[13] Karimpour, M.H., Malekzadeh Shafaroudi, A., Sfandiarpour, A. and Mohammadnejad, H. (2011). Neyshabour turquoise mine: The first Cu-Au-U-REE mineralization of IOCG type in Iran. Journal of Economic Geology, 2(3):193-216. (in Persian).
[14] Eslami, S., (2012), Structural Analysis of Neishabour Turquoise Mineral Area, Unpublished M.Sc. Thesis, Ferdowsi University of Mashhad. (in Persian).
[15] Baumann, A., Spies, O. and Lensch, G. (1983). Strontium isotopic composition of post-ophiolitic Tertiary volcanics between Kashmar, Sabzevar and Quchan/NE Iran. Geodynamic project (geotraverse) in Iran, Final report, Geological Survey of Iran Report no.51.
[16] Spies, O., Lensch, G. and Mihm, A., 1983. Geochemistry of the post-ophiolitic Tertiary volcanics between Sabzevar and Quchan/NE-Iran. Geodynamic project (geotraverse) in Iran, Final report. Geological Survey of Iran. Report no.51.
[17] Akrami, M,A., Askari, A (2000). Geological map of SoltanAbad, 1:100,000 Series 7662. Tehran: Geological Survey of Iran.
[18] Ghasemi-Nejad, E., Sabbaghiyan, H. and Mosaddegh, H. (2012). Palaeobiogeographic implications of late Bajocian–late Callovian (Middle Jurassic) dinoflagellate cysts from the Central Alborz Mountains, northern Iran. Journal of Asian Earth Sciences, 43(1), pp.1-10.
[19] Amini, B., Kannazer, N,H. (2000). Geological map of SoltanAbad, 1:100,000 Series 7563. Tehran: Geological Survey of Iran.
[20] Yamaguchi, Y., Kahle, A.B., Tsu, H., Kawakami, T. and Pniel, M. (1998). Overview of advanced spaceborne thermal emission and reflection radiometer (ASTER). IEEE Transactions on geoscience and remote sensing, 36(4), pp.1062-1071.
[21] Whitney, P.R. and Olmsted, J.F. (1998). Rare earth element metasomatism in hydrothermal systems: The Willsboro-Lewis wollastonite ores, New York, USA. Geochimica et Cosmochimica Acta, 62(17), pp.2965-2977.
[22] Abrams, M. (2000). The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): data products for the high spatial resolution imager on NASA's Terra platform. International Journal of Remote sensing, 21(5), pp.847-859.
[23] Fujisada, H., Iwasaki, A., and Hara, S. (2001). ASTER stereo system performance. Proceedings of SPIE, the International Society for Optical Engineering 4540, Toulouse, p: 39-49.
[24] Crosta, A.P., De Souza Filho, C.R., Azevedo, F. and Brodie, C., 2003. Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. International Journal of Remote Sensing, 24(21), pp.4233-4240.
[25] Gupta. R.P., 1991, Remote sensing geology, Springer- Verlag, Heidelberg
[26] [26]. Abrams, M., Hook, S. and Ramachandran, B. (2002). Aster user handbook: advanced spaceborne thermal emission and reflection radiometer. USA: NASA/Jet Propulsion Laboratory California Institute of Technology, 2(2002.135).
[27] Kruse, F.A., 1988. Use of airborne imaging spectrometer data to map minerals associated with hydrothermally altered rocks in the northern grapevine mountains, Nevada, and California. Remote Sensing of Environment, 24(1), pp.31-51.
[28] Ben-Dor, E. and Kruse, F.A., 1994. The relationship between the size of spatial subsets of GER 63 channel scanner data and the quality of the Internal Average Relative Reflectance (IARR) atmospheric correction technique. Remote Sensing, 15(3), pp.683-690.
[29] Di Tommaso, I. and Rubinstein, N. (2007). Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina. Ore Geology Reviews, 32(1-2), pp.275-290.
[30] Jun, L., Songwei, C., Duanyou, L., Bin, W., Shuo, L. and Liming, Z. (2008). Research on false color image composite and enhancement methods based on ratio images, the international archives of the photogrammetry. Remote Sensing and Spatial Information Sciences, Vol. 37, pp. 1151-1154.
[31] Azizi, H., Tarverdi, M.A. and Akbarpour, A. (2010). Extraction of hydrothermal alterations from ASTER SWIR data from east Zanjan, northern Iran. Advances in Space Research, 46(1), pp.99-109.
[32] Boloki, M. and Poormirzaee, M. (2010). Using ASTER image processing for hydrothermal alteration and key alteration minerals mapping. Journal of Latest Trends on Engineering Mechanics, Structures, Engineering Geology, 1, pp.77-82.
[33] Crowley, J.K., Brickey, D.W. and Rowan, L.C. (1989). Airborne imaging spectrometer data of the Ruby Mountains, Montana: mineral discrimination using relative absorption band-depth images. Remote Sensing of Environment, 29(2), pp.121-134.
[34] Rowan, L.C. and Mars, J.C. (2003). Lithologic mapping in the Mountain Pass, California area using advanced spaceborne thermal emission and reflection radiometer (ASTER) data. Remote sensing of Environment, 84(3), pp.350-366.
[35] Rowan, L. C., Goetz, A.F.h., and Ashley, R. P. (1977). Discrimination of hydrothermally altered rocks and unaltered rocks in visible and near infrared multispectral images. Geophysics, v. 42, p. 522-535.
[36] Bedini, E. (2011). Mineral mapping in the Kap Simpson complex, central East Greenland, using HyMap and ASTER remote sensing data. Advances in Space Research, 47(1), pp.60-73.
[37] Harsanyi, J.C., Farrand, W. and Chang, C.I. (1994). April. Detection of subpixel spectral signatures in hyperspectral image sequences. In Annual Meeting, Proceedings of American Society of Photogrammetry & Remote Sensing (pp. 236-247).
[38] Kruse, F.A., Lefkoff, A.B., Boardman, J.W., Heidebrecht, K.B., Shapiro, A.T., Barloon, P.J. and Goetz, A.F.H. (1993). August. The spectral image processing system (SIPS)‐interactive visualization and analysis of imaging spectrometer data. In AIP Conference Proceedings (Vol. 283, No. 1, pp. 192-201). American Institute of Physics.
[39] Malekzadeh, A., Karimpour, M.H., Stern, C. R. and Mazaheri, S.A. (2009). Hydrothermal Alteration Mapping in SW Birjand, Iran, Using the Advanced Spaceborne Thermal Emis- sion and Reflection Radiometer (ASTER) Image Processing, Journal of Applied Sciences, v. 9, p. 829-842.
[40] Yuhas, R.H., Goetz, A.F. and Boardman, J.W. (1992). Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm. In Summaries of the Third Annual JPL Airborne Geoscience Workshop, JPL Publication, v. 1, p. 147- 149.
[41] Shahriari, H., Ranjbar, H., Honarmand, M. and Carranza, E.J.M. (2014). Selection of less biased threshold angles for SAM classification using the real value–area fractal technique. Resource Geology, 64(4), pp.301-315.
[42] Research Systems Inc., ENVI User’s Guide, ENVI Version 4.1, 2004, pp.1150
[43]
Seifi, A.,
Hosseinjanizadeh, M.,
Ranjbar, H. and
Honarmand, M. (2017). Investigation acid mine drainage minerals using spectral characteristics and satellite images processing of Landsat- 8, a case study: Darrehzar mine, Kerman Province, Iran,
V. 43, P. 31-43.
[44] Hosseinjani Zadeh, M., Tangestani, M. H., Velasco Roldan, F. and Yusta, I. (2014). Mineral Exploration and Alteration Zone Mapping Using Mixture Tuned Matched Filtering Approach on ASTER Data at the Central Part of Dehaj-Sarduiyeh Copper Belt, SE Iran, IEEE Journal of selected topics in applied earth observations and remote sensing, Vol. 7, No. 1, 284-289.
[45] Van der Meer, F., Hecker, C., Van Ruitenbeek, F., Van der Werff, H., De Wijkerslooth, C. and Wechsler, C. (2014). Geologic remote sensing for geothermal exploration: A review, International Journal of Applied Earth Observation and Geoinformation. V. 33, p. 255–269.
[46] Zabcic, N. (2008). Derivation of surface pH-values based on mineral abundances over pyrite mining areas with airborne hyperspectral data (Hymap) of Sotiel-Migollas mine complex, Spain. M.S dissertation, University of Alberta, Edmonton, Alberta.
[47] Calvin, W.M., Littlefield, E.F. and Kratt, C. (2015). Remote sensing of geothermal-related minerals for resource exploration in Nevada, Geothermics v. 53, p. 517–526.
[48] Kuenzer, C. and Dech, S. (2013). Thermal Infrared Remote Sensing: Sensors, Methods, Applications, Remote Sensing and Digital Image Processing, seventeenth ed. Springer Science, Business Media Dordrecht.
[49] Boardman, J.W., Kruse, F.A. and Green, R.O., 1995. Mapping target signatures via partial unmixing of AVIRIS data.summaries, Proceedings of the Fifth JPL Airborne Earth Science Workshop, 23–26 January, Pasadena, California, JPL Publication 95:23-26.
[50] Whitney, D.L. and Evans, B.W. (2010). Abbreviations for names of rock-forming minerals. American mineralogist, Vol. 95, pp. 185-187.
[51] Sengör, A.M.C. (1984). The Cimmeride orogenic system and the tectonics of EurasiaGeological Society of America, Special Paper 195, pp. 8.