بررسی عملکرد زنجیره مارکوف تعمیم‌یافته در شبیه‌سازی متغیرهای گسسته در یک مطالعه موردی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده معدن، دانشگاه صنعتی سهند تبریز، آذربایجان شرقی، ایران

چکیده

مدل‌سازی ناهمگونی رخساره‌های زمین‌شناسی نقشی مهم در شناسایی موقعیت قرارگیری رخساره‌ها ایفا می‌کند. استفاده از روش‌های تخمین و شبیه‌سازی زمین‌آماری مبتنی بر واریوگرام به دلیل دقت بالا و لحاظ کردن عدم قطعیت مدل‌ها، امروزه کاربردهای مؤثر و چشمگیری در مدل‌سازی نهشته‌های معدنی داشته‌اند. با توجه به خطی بودن تخمینگرهای مرسوم زمین‌آماری، مدل‌سازی فضایی ویژگی‌های رخساره‌ها با کاستی‌هایی همراه است. الگوریتم شبیه­سازی شاخص پی‌درپی (SIS) روشی محبوب و پرکاربرد در حیطه مدل‌سازی رخساره­ها است که بر پایه­ی آنالیز ساختاری متغیر شاخص و مبتنی بر برآورد تابع توزیع احتمال محلی با کمک کریجینگ شاخص اجرا می­شود. این روش نیز زمانی که حجم داده‌های اولیه پایین است عملکرد مناسبی از خود نشان نمی‌دهد. روش زنجیره مارکوف تعمیم‌یافته (GCMC) یکی از مناسب‌ترین روش‌های زنجیره مارکوف در شبیه‌سازی متغیرهای گسسته در نهشته‌های رسوبی است. این روش برای شبیه‌سازی از روابط بین کلاسی و احتمالات گذار استفاده می‌کند. در این تحقیق از سه روش تخمین کریجینگ شاخص، روش‌های شبیه‌سازی SIS و GCMC در مدل‌سازی واحدهای کربناته یک مقطع انتخابی از نهشته آهک ارشتناب بستان‌آباد استفاده ‌شده است. در ادامه نتایج حاصل از هر سه روش باهم مقایسه شده و میزان بازتولید مقادیر نسبت حجمی و واریوگرام­ها مورد بحث قرار گرفت. درروش کریجینگ شاخص روند عمومی قرارگیری کلاس‌ها به‌خوبی تولید شده، اما هموارشدگی به‌صورت واضح در مقطع دیده می‌شود. در نتایج GCMC نحوه تولید الگوها نسبت به دو روش دیگر انطباق بهتری با واقعیت زمین‌شناسی منطقه دارد. این تحقیق نشان می‌دهد که روش SIS در تولید الگوها عملکرد ضعیف‌تری نسبت به GCMC داشته و الگوهای تولیدی متفاوت از وضعیت واقعی لایه‌بندی بوده و پراکندگی بیشتری از خود نشان می‌دهند. با توجه به نتایج منطقی و پیاده‌سازی آسان، روش GCMC ابزاری مناسب جهت پیش‌بینی اولیه و مدل‌سازی کلاس‌ها در محیط‌های رسوبی است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of generalized Markov chain performance in simulation of discrete variables in a case study

نویسندگان [English]

  • Mitra Mahmoudi
  • Enayatollah Ranjineh Khojasteh
  • Yousef Sharghi
Sahand university of Technology
چکیده [English]

Summary
Geological modeling of heterogeneous facies plays an important role in the detection of stratigraphic uncertainty. In this research, three methods, Indicator kriging (IK), Sequential Indicator Simulation (SIS), and Generalized Coupled Markov Chain (GCMC) were applied to predict geological categories at unknown locations. Then the results of all three methods were compared.
Introduction
There are various methods for estimating and determining the spatial variation of categorical variables using geological data and exploratory wells. One of the best of these methods is geostatistical methods. As new Geostatistical methods, the GCMC algorithm, one of the Markov chain models, has been used in the earth sciences to simulate categorical variables of sedimentary deposits. This method is based on the calculation of transition probability matrixes with respect to the direction and spatial variations between classes. Due to the realistic results and easy implementation, the GCMC method is a suitable tool for the initial predicting and modeling of categorical variables in sedimentary environments.
Methodology and Approaches
In this study, one of the drilling profiles in block C of the Bostanabad Areshtenab limestone deposit was selected for modeling. At this point, three carbonate units can be distinguished from the 5 exploratory boreholes dataset. To build the prediction models, after transforming the coordinates into a stratigraphic coordinates system (unfolding the strata by vertical transformation), the vertical and horizontal variability and continuity structure of the three existing classes were modeled with indicator variograms and transition probabilities. Then the mentioned geostatistical prediction techniques were applied to generate the spatial variability models.
Results and Conclusions
In general, this study suggested the application of three geostatistical prediction methods for constructing realistic subsurface models of the categorical variables. According to the results, the IK result represented the general occurrence trend better. However, the spatial variability structure could not be reflected sufficiently and clearly. Although, in the SIS results fine and subtle variations were reflected, the produced patterns were more scattered. As the result of this study, the GCMC method can reproduce the global statistics, spatial structural functions (transiograms), and more realistic subsurface models, especially with sparse data in sedimentary systems. 

کلیدواژه‌ها [English]

  • Geostatistics
  • Categorical variables
  • Indicator Kriging (IK)
  • Sequential Indicator Simulation (SIS)
  • Generalized Coupled Markov Chain (GCMC)

پیش‌بینی دقیق زمین‌شناسی و تعیین ناهمگونی‌های زیرسطحی در بسیاری از زمینه­های مهندسی ازجمله مدل‌سازی ذخایر آهکی اهمیت بسزایی دارد و گام مهمی قبل از هر تصمیم مهندسی در مورد برنامه‌های اکتشافی در داخل یا اطراف مناطق مورد نظر است. شناسایی و تفسیر ناهمگنی‌های زیرسطحی به‌ویژه رخساره‌های سنگی، در بازسازی شکل هندسی ذخیره معدنی، در اکتشاف معدن نقشی اساسی دارد [1]. از طرفی به دلیل محدودیت‌های فنی و اقتصادی، برنامه‌های حفاری اکتشافی متراکم و نمونه‌برداری جامع برای اندازه‌گیری خواص متغیرها در منطقه مورد نظر امکان‌پذیر نیست. ازاین‌رو با مدل‌سازی رخساره­ها و تعیین نحوه قرارگیری آن‌ها و شناسایی لایه‌های مختلف، میزان پتانسیل ماده معدنی تخمین زده می‌شود [2]. به همین منظور روش‌های متنوعی برای مدل‌سازی متغیرهای گسسته بخصوص ویژگی‌های رخساره‌های سنگی ارائه‌شده‌اند که از بهترین این روش‌ها می­توان به روش‌های زمین‌آماری اشاره کرد؛ زیرا اجرای روش‌های زمین‌آماری بستر مناسبی را برای ایجاد مدل‌های دقیق و درعین‌حال قابل ارزیابی ازنظر عدم اطمینان فراهم می‌آورد [3]. از روش‌های زمین‌آماری کاربردی در مدل‌سازی متغیرهای گسسته می‌توان به روش‌های شبیه‌سازی شاخص پی‌درپی[i]، شبیه‌سازی چند گوسی[ii]، شبیه‌سازی شیء مبنا[iii]، شبیه‌سازی چندنقطه‌ای[iv]، شبیه‌سازی زنجیره مارکوف[v] و غیره اشاره کرد.



[i] Sequential Indicator Simulation (SIS)

[ii] Pluri-Gaussian Simulation

[iii] Object based modelling

[iv] Multiple Point Simulation (MPS)

[v] Markov Chain (MC)

[1]                 Elfeki, A., and Dekking, M. (2007). Reducing geological uncertainty by conditioning on boreholes: the coupled Markov chain approach. Hydrogeology Journal. 15(8), 1439-1455.
[2]                 Deutsch, C. V. (2002). Geostatistical Reservoir Modelling. Oxford: Oxford University Press, Print.21-22.
[3]                 Mahmoudi, M., Ranjineh Khojasteh, E., R., and Sharghi, Y. (2019). Geostatistical modelling of the subsurface geological-geotechnical heterogeneities in Tabriz Subway, East Azarbayjan Province, Iran. ZDGG (journal of applied and regional geology). band 170, heft 2, 145 – 159.
[4]                 Elfeki, A., and Dekking, M. (2005). subsurface heterogeneity by coupled Markov chains: Directional dependency, Walther’s law and entropy. Geotechnical and Geological Engineering. 23, 721–756.
[5]                 Carle, S. F., and Fogg, G. E. (1996). Transition probability-based indicator geostatistics. Mathematical Geology. 28(4), 453–476.
[6]                 Weissmann, G., S., Carle, S., F., and Fogg, G., E. (1999). Three-dimensional hydrofacies modelling based on soil surveys and transition probability geostatistics. Water resources research. 35(6), 1761-1770.
[7]                 Carle, S.F. (2000). Use of a Transition Probability/Markov Approach to Improve Geostatistical simulation of Facies Architecture. Applied Reservoir Characterization Using Geostatistics. The Woodlands, Texas.
[8]                 Li, W. (2006). Transiogram: a spatial relationship measure for categorical data. International Journal of Geographical Information Science. 20(6), 693-699.
[9]                 Park, E., (2010). A multidimensional, generalized coupled Markov chain model for surface and 614 subsurface characterization. Water Resources Research. 46(11).
[10]              Park, E., Elfeki, A., M., Song,Y., and Kim, K. (2007). Generalized Coupled Markov Chain model for characterizing categorical variables in Soil mapping. Soil Science Society of America Journal. 71(3), 909-917.
[11]              Krumbein, W. C. (1967). Fortran computer programs for Markov chain experiments in geology: Computer Contribution 13, Kansas Geological Survey, Lawrence, KS.
[12]              Carle, S.F. (1999). T-PROGS: Transition Probability Geostatistical Software. Version 2.1 User's Guide. University of California, Davis, CA.
[13]              Elfeki, A., and Dekking, M. (2001). A Markov chain model for subsurface characterization: theory and applications. Mathematical Geology. 33(5).
[14]              Li, W., Zhang, C., Burt, J. E., Xing Zhu, A., and Feyen, J. (2004). Two-dimensional Markov Chain Simulation of Soil Type Spatial Distribution. Soil Science Society of America 1Journal. 68, 1479–1490.
[15]              Park, E., Elfeki, A., M., and Dekking, M. (2005). Characterization of subsurface heterogeneity: Integration of soft and hard information using multi-dimensional Coupled Markov chain approach. Developments in Water Science. 52, 193-202.
[16]              Moon, Y., Zhang Y., Song Y., Park E., and Moon H. (2012). Multivariate statistical analysis and 3D-coupled Markov Chain modelling approach for the prediction of subsurface heterogeneity of contaminated soil management in abandoned Guryong Mine Tailings, Korea. Environmental Earth Sciences. 68, 1527-1538.
[17]              Han, W. S., Kim, K., Y., Choung, S., Jeong, J., Jung, N., H., and Park, E. (2014). Non-parametric simulations-based conditional stochastic predictions of geologic heterogeneities and leakage potentials for hypothetical CO2 sequestration sites. Environmental Earth Sciences. 71, 2739–2752.
[18]              Deng, Z., P., Jiang, S., H., Niu, J., T., Pan, M., and Liu, L., L. (2020). Stratigraphic uncertainty characterization using generalized coupled Markov chain. Bulletin of Engineering Geology and the Environment. 79, 5061–5078.
[19]              JTSAHAND. (2010). Mineral resource estimation for Areshtenab limestone. in Persian.
[20]               Rossi, M. E., and Deutsch, C., V. (2014). Mineral Resource Estimation. Springer, 43.
[21]               Remy, N., Boucher, A., and Wu, J. (2009). Applied Geostatistics with SGeMS, Cambridge University Press: New York. 113.
[22]              Deutsch, C.V., and Journel, A.G. (1992). GSLIB: Geostatistical Software Library and user’s guide. Oxford Univ. Press, New York.p.151-152. Computers & Geosciences.32, 1669–1681.
[23]              Deutsch, C., V. (2006). A sequential indicator simulation program for categorical variables with point and block data: BlockSIS. Computers & Geosciences. 32, 1669–1681.
[24]              Li, W. (2007). Transiograms for Characterizing Spatial Variability of Soil Classes. Soil Science Society of America Journal. 71(3), 881-893.
[25]              Leuangthong, O., McLennan, J., A., and Deutsch, C., V. (2004). Minimum Acceptance Criteria for 593 Geostatistical Realizations. Natural Resources Research. 13 (3), 131-141.
[26] Ranjineh Khojasteh, E. (2013). Geostatistical three-dimensional modelling of the subsurface 617 unconsolidated materials in the Göttingen area. PhD Thesis, Georg-August-University School of 618 Science (GAUSS), Göttingen, 162.