جانمایی بهینه تونل‌های غیر هم‌سطح با استفاده از یک رویکرد جدید احتمالاتی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی ژئومکانیک، دانشکده مهندسی علوم زمین، دانشگاه صنعتی اراک

چکیده

یکی از مباحث مهم در طراحی تونل‌های غیر هم‌سطح، تعیین جانمایی بهینه تونل‌ها نسبت به هم هست. این موضوع در مناطق متراکم شهری که اغلب به‌صورت تونل‌های غیرمسلح انجام می‌شود، اهمیت بیشتری پیدا می‌کند. در این تحقیق به‌منظور جانمایی بهینه از دو عامل نشست سطح زمین و پایداری (ضریب ایمنی) تونل‌ها استفاده شده است. جانمایی بهینه تونل‌های غیر هم‌سطح در شرایط متنوع زمین‌شناسی بایستی از روش‌های احتمالاتی و قابلیت اعتماد استفاده کرد. از طرفی آگاهی از میزان تأثیر هر یک از پارامترهای طراحی در مقدار نشست سطح زمین و ضریب ایمنی می‌تواند منجر به کاهش صدمات سازه‌های سطحی شود. در این مقاله از نرم‌افزار المان محدود PLAXIS3D جهت مطالعه حالت‌های مختلف تونل‌های غیر هم‌سطح استفاده شده است. سپس به کمک الگوریتم جستجوی هارمونی دو تابع حالت حدی به‌صورت جدا برای ضریب ایمنی و حداکثر نشست سطح زمین تخمین زده شده است. در ادامه با استفاده از دو تابع حالت حدی به‌دست‌آمده از مرحله‌ی قبل و روش‌های قابلیت اعتماد مرتبه اول و شبیه‌سازی مونت‌کارلو در نرم‌افزار RT بهترین جانمایی برای حفر تونل جدید نسبت به تونل قبلی (موجود) بر مبنای داشتن بیشترین ضریب ایمنی و کمترین نشست سطح زمین پیشنهاد شده است. نتایج نشان می‌دهد که احتمال شکست تونل اول (موجود) تقریباً 0/3 درصد بوده و ازنظر پایداری و عکس‌العمل نسبت به موقعیت بهینه تونل جدید شرایط ایده‌آلی خواهد داشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimal location of non-level tunnels using a new probabilistic approach

نویسندگان [English]

  • Hadi Fattahi
  • Hossein Ghaedi
  • Farshad Malekmahmudi
Department of Earth Sciences Engineering, Arak University of Technology, Arak, Iran
چکیده [English]

Summary
One of the important issues in designing non-level tunnels is determining the optimal location of tunnels relative to each other. In this research, to optimally locate the two factors of land subsidence and stability (safety factor) of tunnels have been used. Optimal placement of non-level tunnels in various geological conditions should use probabilistic methods and reliability. In this paper, PLAXIS3D finite element software is used to study different states of non-level tunnels. Then, using the harmony search algorithm, two limit state functions are estimated separately for the safety factor and maximum ground surface subsidence. Then, using the two limit state functions obtained from the previous step and the first-order reliability methods and the Monte Carlo simulation in RT software, the best location for excavation of the second tunnel in relation to the previous (existing) tunnel is based on having the highest safety factor and lowest ground subsidence.
 
Introduction
Due to the complexity of the interaction between the tunnels and also due to the uncertainty in the design parameters, in this paper, using probabilistic analyzes such as the Monte Carlo simulation method and first-order reliability, the optimal stability and placement of non-level tunnels in RT probabilistic software was discussed. Because RT software requires a correct and accurate limit state function, the harmonic search algorithm in MATLAB was used to calculate the stability and also to achieve this limit state function.
 
Methodology and Approaches
In this paper, using PLAXIS3D software, the tunnel was modeled in 32 different rock masses and the results are different in each of the 32 rock masses due to the inequality in the input parameters (safety factor and maximum settlement). To evaluate the reliability of the new tunnel excavation (existing sub-tunnel), 32 models which were analyzed by PLAXIS3D software were compared with the predicted model to achieve the lowest settlement rate and the highest safety factor by the harmony search algorithm. The comparison showed good consistency between the model predicted by the harmony search algorithm and the model performed by numerical methods. Therefore, due to the proximity of the performed model and the predicted model, the limit state function is accurate to obtain the probability of failure of the new tunnel.
 
Results and Conclusions
According to the results obtained in both Monte Carlo simulation methods and first-order reliability, the probability of failure (approximately 0.33%) and the high-reliability index are shown and the tunnel position is in very good condition. According to the analysis of tunnel random variables by RT software, it was found that the geological durability index is very important and effective. It should be noted that the results of this study show that the reliability methods used in the RT program to stabilize and locate the new tunnel under the existing tunnel can be used as a high-performance method in analyzing underground space problems.

کلیدواژه‌ها [English]

  • Harmony search algorithm
  • RT software
  • PLAXIS3D
  • First-order reliability methods
  • Non-level tunnels

در چند سال اخیر با افزایش دانش بشر در ساخت فضاهای زیرزمینی، پیشرفت فناوری و همچنین به دلایل مسائل سیاسی، امنیتی و اقتصادی توجه بسیاری از کشورهای توسعه‌یافته و درحال‌توسعه به احداث سازه‌های زیرزمینی برای کاربردهای عمرانی، نظامی و معدنی معطوف شده است. یکی از این سازه‌ها که در چند دهه‌ی اخیر بسیار مورداستفاده و بهره‌برداری قرارگرفته، تونل‌های شهری است که با گسترش شهرنشینی و افزایش جمعیت در شهرهای بزرگ، جهت تسهیل رفت‌وآمد شهروندان احداث‌شده و به دلیل دارا بودن فواید بسیاری همچون کوتاه شدن مسیرها، بهبود ترافیک و کاهش مشکلات زیست‌محیطی و استفاده‌ی عموم مردم روزبه‌روز بیشتر می‌شود.

[1]   Boonyarak, T. (2014). Three-dimensional interaction of multiple crossing tunnels: centrifuge and numerical modeling.
[2]   Chakeri, H., Hasanpour, R., Hindistan, M. A., & Ünver, B. (2011). Analysis of interaction between tunnels in soft ground by 3D numerical Bulletin of engineering geology and the environment, 70(3), 439-448.
[3]   Chehade, F. H., & Shahrour, I. (2008). Numerical analysis of the interaction between twin-tunnels: Influence of the relative position and construction procedure. Tunnelling and Underground Space Technology, 23(2), 210-214.
[4]   Choi, S., Grandhi, R., & Canfield, R. (2007). Reliability-based Structural Design Springer-Verlag London Limited.
[5]   Do, D.-P., Tran, N.-T., Mai, V.-T., Hoxha, D., & Vu, M.-N. (2019). Time-Dependent Reliability Analysis of Deep Tunnel in the Viscoelastic Burger Rock with Sequential Installation of Liners. Rock Mechanics and Rock Engineering, 1-27.
[6]   Do, N.-A., Dias, D., Oreste, P., & Djeran-Maigre, I. (2014). Three-dimensional numerical simulation of a mechanized twin tunnels in soft ground. Tunnelling and Underground Space Technology, 42, 40-51.
[7]   Fang, Q., Zhang, D., Li, Q., & Wong, L. N. Y. (2015). Effects of twin tunnels construction beneath existing shield-driven twin tunnels. Tunnelling and Underground Space Technology, 45, 128-137.
[8]   Fang, Y., & Su, Y. (2020). On the use of the global sensitivity analysis in the reliability-based design: Insights from a tunnel support case. Computers and Geotechnics, 117, 103280.
[9]   Fattahi, H. (2016). Application of improved support vector regression model for prediction of deformation modulus of a rock mass. Engineering with Computers, 32(4), 567-580.
[10]   Fattahi, H. (2017). Prediction of slope stability using adaptive neuro-fuzzy inference system based on clustering methods. Journal of Mining and Environment, 8(2), 163-177.
[11]   Fattahi, H. (2020). A New Method for Forecasting Uniaxial Compressive Strength of Weak Rocks. Journal of Mining and Environment, 11(2), 505-515.
[12]   Fattahi, H., Gholami, A., Amiribakhtiar, M. S., & Moradi, (2015). Estimation of asphaltene precipitation from titration data: a hybrid support vector regression with harmony search. Neural Computing and Applications, 26(4), 789-798.
[13]   Fu, H., An, P., Huang, Z., Zhang, J., Shi, Y., & Yao, G. (2020). Determination of Safety Distance of Twin Tunnel Underpassing Existing Tunnels. In Advances in Environmental Vibration and Transportation Geodynamics (pp. 839-848): Springer.
[14]   Geem, Z. W., Kim, J. H., & Loganathan, G. V. (2001). A new heuristic optimization algorithm: harmony search. Simulation, 76(2), 60-68.
[15]   Ghaboussi, J., & Ranken, R. E. (1977). Interaction between two parallel tunnels. International Journal for Numerical and Analytical Methods in Geomechanics, 1(1), 75-103.
[16]   Ghasemi, S. H., & Nowak, A. S. (2018). Reliability analysis of circular tunnel with consideration of the strength limit state. Geomechanics and Engineering, 15(3), 879-888.
[17]   Hoyaux, B., & Ladanyi, B. (1970). Gravitational stress field around a tunnel in soft ground. Canadian Geotechnical Journal, 7(1), 54-61.
[18]   Kim, S.-H. (1996). Model testing and analysis of interactions between tunnels in clay. University of Oxford,
[19]   Lee, K. S., & Geem, Z. W. (2005). A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Computer methods in applied mechanics and engineering, 194(36-38), 3902-3933.
[20]   Li, X., & Yuan, D. (2012). Response of a double-decked metro tunnel to shield driving of twin closely under-crossing tunnels. Tunnelling and Underground Space Technology, 28, 18-30.
[21]   Liang, R., Xia, T., Hong, Y., & Yu, F. (2016). Effects of above-crossing tunnelling on the existing shield tunnels. Tunnelling and Underground Space Technology, 58, 159-176.
[22]   Liu, H., Li, P., & Liu, J. (2011). Numerical investigation of underlying tunnel heave during a new tunnel construction. Tunnelling and Underground Space Technology, 26(2), 276-283.
[23]   Liu, H., & Low, B. K. (2017). System reliability analysis of tunnels reinforced by rockbolts. Tunnelling and Underground Space Technology, 65, 155-166.
[24]   Liu, H., Small, J. C., & Carter, J. P. (2008). Full 3D modelling for effects of tunnelling on existing support systems in the Sydney region. Tunnelling and Underground Space Technology, 23(4), 399-420.
[25]   Lü, Q., Xiao, Z.-P., Ji, J., Zheng, J., & Shang, Y.-Q. (2017). Moving least squares method for reliability assessment of rock tunnel excavation considering ground-support interaction. Computers and Geotechnics, 84, 88-100.
[26]   Sahoo, J. P., & Kumar, J. (2013). Stability of long unsupported twin circular tunnels in soils. Tunnelling and Underground Space Technology, 38, 326-335.
[27]   Sherizadeh, H., & Dehghan, S. (1395). A comparison between numerical modelling and monitoring data's on Tehran subway line 7. 10'th Student Mining Engineering Kashan: University of Kashan.
[28]   Shirinabadi, R., & Moosavi, E. (2016). Twin tunnel behavior under static and dynamic loads of Shiraz metro, Iran. Journal of mining science, 52(3), 461-472.
[29]   Singh, R., Singh, T., & Bajpai, R. (2018). The investigation of twin tunnel stability: Effect of spacing and diameter. Journal of the Geological Society of India, 91(5), 563-568.
[30]   Tohidi, A., & Sadaghiani, H. (1389). An investigation on affecting factors on interaction of constructing
[31]   non-level crossing tunnels. Tehran: Sharif University of Technology, Faculty of Engineering, Civil Engineering Department.
[32]   Wang, Z., Sampaco, K., Fischer, G., Kucker, M., Godlewski, P., & Robinson, R. (2000). Models for predicting surface settlements due to soft ground tunneling. Paper presented at the North American Tunneling 2000American Underground Construction Association
[33]   Zhang, W., Liu, D.-Y., Li, C., hen, X.-P., & Zou, C.-Q. (2017). Accumulation, partitioning, and bioavailability of micronutrients in summer maize as affected by phosphorus supply. European Journal of Agronomy, 86, 48-59.