شبیه‌سازی عددی تأثیر دانه‌بندی و شرایط مرزی بر رفتار ستون‌های سنگی تقویت‌کننده خاک با استفاده از روش اجزای مجزا

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه قم

چکیده

یکی از روش‌های مؤثر بهسازی خاک روش ستون سنگی است. در این روش خاک مسئله‌دار با ستون‌هایی از جنس مصالح شنی جایگزین می‌شود و منتج به افزایش ظرفیت باربری و کاهش نشست پذیری و افزایش توان زهکشی خاک می‌گردد. یکی از عوامل مهم باربری ستون‌های سنگی، کیفیت محصورشدگی آن‌ها در خاک است. در خاک‌های سست فشار جانبی اعمالی به ستون کافی نبوده و ستون سنگی تحت اثر بارهای اعمالی دچار کمانش جانبی می‌شود. مدل‌سازی عددی سازوکار باربری ستون‌های سنگی با استفاده از روش‌های تحلیلی و شبیه­سازی­های عددی مبتنی بر مکانیک محیط‌های پیوسته درگذشته انجام‌شده است. در این پژوهش با استفاده از روش عددی اجزای مجزا که توانایی خوبی در شبیه‌سازی رفتار مکانیک محیط‌های گسسته دارد، ظرفیت باربری ستون سنگی و سازوکار کمانش جانبی ایجادشده در زنجیره‌های باربر ذرات ستون سنگی سست بررسی‌شده است. در ادامه برخی پارامترهای مؤثر بر ظرفیت باربری ستون سنگی مانند دانه‌بندی، قطر و شرایط انتهایی ستون سنگی مورد ارزیابی قرارگرفته است. نتایج این شبیه‌سازی با نتایج تئوری اعتبار سنجی شده است که نشان می‌دهد روش عددی اجزای مجزا، توانمندی لازم را در شبیه‌سازی ستون سنگی دارا است. نتایج نشان می‌دهد افزایش قطر ستون سنگی باعث افزایش ظرفیت باربری می‌شود و ستون سنگی گیردار بین 25 تا 30 درصد ظرفیت باربری بیشتری نسبت به ستون سنگی شناور دارد. نتایج شبیه‌سازی نشان می­دهد کاهش اندازه دانه‌بندی تأثیرات محدودی بر کاهش ظرفیت باربری مجموعه ستون سنگ-خاک سست دارد. چراکه با افزایش تعداد ذرات در واحد سطح و به دنبال آن با افزایش تعداد تماس‌ها، تعداد ذرات بیشتری در باربری مشارکت داشته و چنانچه ذره­ای که در زنجیره اصلی باربر واقع‌شده است، از مسیر خارج شود، باز توزیع نیرو صورت گرفته و کمانش کلی زنجیره­های نیرویی رخ نمی­دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical simulation of the effect of particle size distribution and boundary conditions on the behavior of stone columns using DEM

نویسندگان [English]

  • hamed bayesteh
  • Kamran Hooshyar
Department of civil engineering, University of Qom, Qom, Iran
چکیده [English]

Summary
In this study, using the DEM (which exhibits suitable abilities to simulate the mechanical behavior of discrete media), the bearing capacity of a stone column has been modeled. The results showed that increasing the diameter of the stone column increases the bearing capacity and the trapped stone column has between 25 to 30% more bearing capacity than the floating stone column.
 
Introduction
It is necessary to study the actual behavior of stone columns in different boundary conditions and soils and against incoming loads. In this regard, researchers have used laboratory tools to study the performance of these columns. However, due to some limitations of laboratory methods, it is impossible to control all effective microstructural parameters in understanding stone column behavior. In this regard, some numerical studies based on the continuum mechanics were performed. Numerical modeling based on the mechanics of continuous media has provided valuable results on subsidence, lateral deformation, and stress-strain diagrams based on macroscopic behavior. However, stone columns are generally composed of washed sand materials and their behavioral nature is distinct sometimes their behavior depends on the performance of their particles in interaction with loose soil particles and it is not possible to accurately evaluate the performance of stone columns using finite element modeling. The discrete component method has been considered as the purpose of this research.
 
Methodology and Approaches
The dimensions of the model were selected due to the limited number of particles due to the increase in the time of analysis on the scale of the laboratory physical model. These dimensions are determined in such a way that, with a scale of 20 times, they are similar to real projects and represent the diameter of a column of 1 meter with a length of 6 meters in reality. To eliminate the effects of lateral borders on the results, the distance of the borders from the center of the stone column was considered to be 5 times the diameter of the column. A behavioral model with rolling resistance was used.
 
Results and Conclusions
The modeled stone column is a tall stone column. Because the soil around the stone column is loose, the failure of the stone column is in the form of lateral expansion, which in this form is the tendency of the main force chains. The tall stone column, without lateral restraint, which rests on the trapped end and the forces are transmitted along with them, acted like a tall and thin column, which if its axis exceeds the thinness of the column. The buckle follows it. Evaluation of the behavior of the stone column can be simulated with the DEM, and micro-mechanical evaluations, especially the buckling of force-carrying chains and the path of particles can be observed. Also, the reduction of particle size has limited effects on reducing the bearing capacity of the loose stone-soil column complex.

کلیدواژه‌ها [English]

  • Numerical simulation
  • DEM
  • Stone column

ساخت ستون‌های سنگی به ­عنوان روشی مؤثر، اقتصادی و سازگار با محیط‌زیست بوده که به­ منظور کاهش نشست، افزایش ظرفیت باربری، کاهش پتانسیل روانگرایی و افزایش سرعت تحکیم زمین­های سست به کار می­رود [1]. در اصلاح خاک به روش ستون‌های سنگی، مصالح دانه­ای با مقاومت برشی بالا و قابلیت تراکم ­پذیری بسیار پایین جایگزین خاک‏ های نرم و سست شده و سهم قابل‌توجهی از بارهای اعمالی به فونداسیون، به‌وسیله‌ی این ستون‌ها تحمل می‌شود.

[1] Soroush A, Tabarsaz S., (2010), "Numerical analysis of ground reinforced with a stone column group", IQBQ., 10 (2).
[2] FHWA, (1983),Design and construction of stone column, Volume I, Report No. FHWA/RD-83/026.
[3] Wu, C. S., and Hong, Y. S. (2008), “The behavior of a laminated reinforced granular column”, Geotextiles and Geomembranes, Vol. 26, pp. 302–316.
[4] Wu, C. S., Hong, Y. S., and Lin, S. C., (2009), “Axial stress strain relation of encapsulated granular column”, Computers and Geotechnics, Vol. 36, pp. 226–240.
[5] Hu, W., Wood, D.M. and Stewart, W., (1997), “Ground improvement using stone column foundations: result of model tests”, Int. Conf. on Ground Improvement Techniques, pp.247-256.
[6] Malarvizhi, S. N. and Ilamparuthi, K., (2004), “Load versus settlement of claybed stabilized with stone & reinforced stone columns”, Proceedings of the 3rd Asian Regional Conference on Geosynthetics, June 21-24, Seoul, Korea, pp. 322–329.
[7] McKelvey, D., Sivakumar, V., Bell, A., and Graham, J., (2004), “Modelling vibrated stone columns in soft clay ”, Proceedings of the ICE - Geotechnical Engineering, Vol. 153, No. 3, pp. 137-149.
[8] Gniel, J., and Bouazza, A., (2009), “Improvement of soft soils using geogrid encased stone columns”, Geotextiles and Geomembrances, 27(3), pp. 167-175.
[9] Malekpoor, M.R., and Toufigh, M.M., (2010), “Laboratory study of soft soil improvement using lime mortar- (well graded) soil columns”, Geotechnical Testing Journal (ASTM), Vol. 16, No. 3, pp. 1-11.
[10] Dash, S.K., and Mukual C.B., (2013), “Influences of geosynthetic encasement on the performance of stone columns flooting in soft clay”, Canadian Geotechnical Journal, Vol 50, No.7, pp. 754- 765.
[11] Zdravkovic, j., and Carter, j., (2008), “Constitutive and numerical modelling”, Geotechnique, Vol. 58, No. 00, pp. 1–8.
[12] Keykhosropur L., Soroush A., and Imam R., (2012), “3D numerical analyses of geosynthetic encased stone columns”, Geotextiles and Geomembranes, Vol. 36, pp 61-68.
[13] Indraratna, B., Ngo, N.T., Rujikiatkamjorn, C., and Sloan, S.W., (2015), “Coupled discrete element–finite difference method for analysing the load-deformation behaviour of a single stone column in soft soil”, Computers and Geotechnics, Vol. 63, pp. 267–278.
[14] Potts, D.M., (2003), “Numerical analysis: a virtual dream or practical reality?”, Geotechnique, Vol. 53, No. 6, pp. 535–573.
[15] Cundall, P.A., and Strack, L., (1979), “A discrete numerical model for granular assemblies”, Géotechnique, Vol. 29, No. 1, pp. 47-65.
[16] Cundall, P.A., and Strack, D.L., (1978), “The Distinct element method as a tool for research in granular media”, Minneapolis, Department of Civil and Mineral Engineering Ltd.
[17] Cundall, P.A., and Strack, D.L., (1979), “A discrete numerical model for granular assemblies,” Geotechnique, Vol. 29, No. 1, pp: 47-65.
[18] Bayesteh, H., and Mansouriboroujeni, R., (2019), "Mechanisms of settlement of a rubble mound breakwater on a soft soil in tidal flats", Marine Georesources & Geotechnology, Vol. 38, Issue 10, pp. 1163-1176.
[19] O’Sullivan, C., (2011), “Particle-Based Discrete Element Modeling: Geomechanics Perspective”, International Journal of Geomechanics, 11, Issue. 6, pp. 449-464.
[20] Khabazian, M., Mirghasemi, A.A., and Bayesteh, H., (2018), “Compressibility of montmorillonite/kaolinite mixtures in consolidation testing using discrete element method”, Computers and Geotechnics, 104, pp. 271–280.
[21] Bayesteh, H., and Mirghasemi, A.A., (2013), "Procedure to detect the contact of platy cohesive particles in discrete element analysis", Powder Technology, 244, pp. 75-84.
[22] Bayesteh, H. and Ghasempour, T., (2018), “Role of the location and size of soluble particles in the mechanical behavior of collapsible granular soil: a DEM simulation” Computational Particle Mechanics, Vol. 6, Issue 3, pp 327–341.
[23] Khabazian, M., Mirghasemi, A.A., and Bayesteh, H., (2020), “Discrete element simulation of drying effect on the volume and equivalent effective stress of kaolinite”. Geotechnique, doi.org/10.1680/jgeot.18.P.239.
[24] Bayesyeh, H., and Hosseini, A., (2021), "Effect of mechanical and electro-chemical contacts on the particle orientation of clay minerals during swelling and sedimentation: A DEM simulation", Computers and Geotechnics, Vol. 130, pp. 103913.
[25] Gu, M., Han, J., and Zhao, M., (2020), “Three-dimensional DEM analysis of axially loaded geogrid-encased stone column in clay bed”, International of Geomechanics, 20(3), pp. 1-11.
[26] Gu, M., J. Han, and M. Zhao., (2017a), “Three-dimensional DEM analysis of single geogrid-encased stone columns under unconfined compression: A parametric study.” Acta Geotech. 12 (3): pp. 559–572.
[27] Gu, M., J. Han, and M. Zhao., (2017b), “Three-dimensional discrete-element method analysis of stresses and deformations of a single geogridencased stone column.” Int. J. Geomech. 17 (9): pp. 04017070.
[28] Gu, M., M. Zhao, L. Zhang, and J. Han., (2016), “Effects of geogrid encasement on lateral and vertical deformations of stone columns in model tests.” Geosynthetics Int. 23 (2), pp. 100–112.
[29] Coetzee, C. J. "Calibration of the discrete element method." Powder Technology 310 (2017): 104-142.
[30] Bowles, J.E., (1982), “Foundation analysis and design”, McGraw-Hill, Third edition. 816 pp.
[31] Fan, H., D, Guo, J., Dong, X., Cui, M., and Zhang, Z., (2018), “Discrete element method simulation of the mixing process of particles with and without cohesive interparticle forces in a fluidized bed”, Powder Technology, Vol. 327, No. 1, p.p: 223-231.
[32] Ciantia, M.O., Arroyo, M., O’Sullivan, C., and Gens, A., (2016), “DEM Investigation of stress and strain evolution around displacement piles in sand”, London, 2016 BGA Annual Conference.