مدل‌سازی عددی سه‌بعدی شکست هیدرولیکی: بررسی تأثیر زمان، نرخ تزریق و ویسکوزیته سیال

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی معدن، نفت و ژئوفیزیک، دانشگاه صنعتی شاهرود

چکیده

شکست هیدرولیکی به‌عنوان یکی از مهم‌ترین تکنیک‌های تحریک مخزن دارای پیچیدگی‌های خاصی است. ازآنجاکه این عملیات بسیار هزینه‌بر و حساس است، انجام آن نیازمند یک طراحی دقیق بوده و لازمه طراحی عملیات، آگاهی از میزان رشد شکاف در نرخ‌های تزریق مختلف و پارامترهای هندسی شکاف در شرایط متفاوت است؛ بنابراین مدل‌سازی سه‌بعدی تنها راه به دست آوردن این مجهولات با بالاترین دقت است. در این تحقیق با استفاده از نرم‌افزار اجزاء محدود آباکوس و بر پایه روش ناحیه چسبناک، یک مدل سه‌بعدی غیرخطی کوپله سیال- جامد ایجاد شده است. این عملیات در یک چاه قائم به وسیله این مدل شبیه‌سازی شده است. در ساخت این مدل از گزارش‌های فنی و نیز تست‌های آزمایشگاهی و برجای انجام شده، در مخزن و چاه مدنظر استفاده شد. از ویژگی‌های این مدل‌سازی می‌توان به مقیاس میدانی آن اشاره کرد. پس از تزریق سیال هندسه شکستگی تحت نرخ‌ها و ویسکوزیته‌های مختلف سیال تزریق‌شده موردمطالعه قرار گرفت. با توجه به نتایج به‌دست‌آمده با افزایش مدت تزریق و همچنین نرخ پمپاژ طول شکستگی افزایش می‌یابد و حداکثر طول ایجاد شده برای سیال با ویسکوزیته یک سانتی‌پواز در زمان تزریق 5 دقیقه با نرخ 35 بشکه در دقیقه یا در زمان تزریق 18 دقیقه و با نرخ 10 بشکه در دقیقه حدود 22 متر است. درحالی‌که حداکثر ارتفاع شکستگی حدود 70 متر است. به علت اختلاف کم تنش برجای شکست هیدرولیکی بیشتر تمایل به رشد ارتفاعی دارد. همچنین حداکثر بازشدگی شکستگی حدود 9 میلی‌متر است. افزایش ویسکوزیته سیال موجب افزایش بازشدگی و تا حدودی باعث بیشتر شدن طول شکستگی می‌شود. درنهایت هندسه شکاف پس از شروع و گسترش شکاف تحت نرخ‌ها و ویسکوزیته‌های مختلف سیال شکاف موردمطالعه قرار گرفت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Three-dimensional numerical modeling of hydraulic fracturing: Investigation of the influence of time, injection rate and fluid viscosity

نویسندگان [English]

  • Abolfazl Haftabadi
  • Shokrollah Zare
Faculty of Mining, Petroleum and Geophysics Engineering, Shahrood Industrial University, Semnan, Iran
چکیده [English]

Summary
According to the results, as the injection duration and the pumping rate increase, the fracture length increases and the maximum length created is about 22 meters by applying a fluid with a viscosity of one centipoise during 5 minutes injection time and the rate of 35 barrels per minute or similarly by the same fluid with 18 minutes injection time and the rate of 10 barrels per minute.
 
Introduction
Hydraulic fracturing if properly implemented can be one of the least costly ways to increase the maximum production of the reservoir. Due to the complexity of the hydraulic fracturing process, various modeling has been performed to find the closest predictions of the actual fracture characteristics. Linear elastic fracture mechanics (LEFM), adhesion zone method, and plastic criteria can be used to evaluate the fracture onset time and its expansion in rock.
 
Methodology and Approaches
To investigate the effect of injection duration on fracture growth, fluid was injected into the well with a viscosity of 1 cp and an injection rate of 0- 10 barrels per minute for periods of 5, 8, 10, 12, 15, and 18 minutes. This injection is made by drilling a well in the middle part of the reservoir. In the first 5 seconds, the injection rate increases linearly from zero to 0.07 barrels per minute and remains constant until the end of injection time. This distribution of injection rate over time is chosen to avoid sudden pressure. As the injection begins, the fluid pressure within the fracture increases, and as the fracture pressure is reached, fracture occurs.
 
Results and Conclusions
The purpose of designing hydraulic fracturing operations is to make some predictions to optimize these operations. There are five important factors to design for a hydraulic fracture: the length, height, and fracture opening that the propane holds, the fracture initiation pressure, and the fracture orientation. Four of these critical parameters are derived from hydraulic fracture modeling, so modeling provides 80% of the required solutions.
The main input parameters for modeling hydraulic fractures are surface stresses, pore pressure, Young's modulus, Poisson's coefficient, porosity, permeability, angle of friction, and rock adhesion, and parameters related to rock fracture mechanics such as fracture energy, toughness, and components. As the injection duration and pumping rate increase, the fracture length increases, and the maximum length created for a fluid with a viscosity of one centipede at an injection of 5 min at 35 barrels per minute or 18 min at 10 barrels, is about 3 meters high while its maximum height is about 70 meters. Also, the maximum fracture opening in its opening is about 1 mm. Fluid viscosity affects the fracture width more than its length and also increases with the fracture width viscosity.

کلیدواژه‌ها [English]

  • Hydraulic Fracturing
  • 3D Modeling
  • Cohesive Zone Method (CZM)
  • Fluid Injection Rate
  • Fluid Viscosity

در برخی از مخازن به دلیل نبود تراوایی کافی تولید نفت و گاز بسیار پایین است. در اطراف هر چاه در اثر اجرای عملیات حفاری، یک منطقه با تراوایی کم ایجاد می‌شود و همچنین با افزایش عمر چاه میزان برداشت کاهش می­یابد. شکست هیدرولیکی در چاه‌های نفت و گاز به‌عنوان یک روش مناسب و مؤثر در افزایش میزان استخراج منابع هیدروکربوری گسترش روزافزونی یافته است. با انجام این عملیات می­توان هدایت سیال درون مخزن به چاه را افزایش داد.

[1]   Valko, P., & Economides, M. J. (1995). “Hydraulic fracture mechanics” (Vol. 28, p. 206). Chichester: Wiley.
[2]   Yao, Y., Gosavi, S. V., Searles, K. H., & Ellison, T. K. (2010, January). “Cohesive fracture mechanics based analysis to model ductile rock fracture”. In 44th US Rock Mechanics Symposium and 5th US-Canada Rock Mechanics Symposium. American Rock Mechanics Association.
[3]   Ortiz, M., & Pandolfi, A. (1999). “Finite‐deformation irreversible cohesive elements for three‐dimensional crack‐ propagation analysis”. International journal for numerical methods in engineering, 44(9), 1267-1282.
[4]   ABAQUS, “6.14 documentation,” Dassault Systemes Simulia Corporation, 2014.
[5]   Zielonka, M. G., Searles, K. H., Ning, J., & Buechler, S. R. (2014, May). “Development and validation of fully-coupled hydraulic fracturing simulation capabilities”. In Proceedings of the SIMULIA community conference, SCC2014 (pp. 19-21).
[6]   Khoei, A. R. (2014). “Extended finite element method: theory and applications”. John Wiley & Sons.
[7]   Haddad, M., & Sepehrnoori, K. (2015, April). “Integration of XFEM and CZM to model 3D multiple-stage hydraulic fracturing in quasi-brittle shale formations: solution-dependent propagation direction”. In Proceedings of the AADE National Technical Conference and Exhibition, AADE2015, San Antonio, Texas, 8-9 April 2015.
[8]   Belytschko, T., & Black, T. (1999). “Elastic crack growth in finite elements with minimal remeshing”. International journal for numerical methods in engineering, 45(5), 601-620.
[9]   Moës, N., Dolbow, J., & Belytschko, T. (1999). “A finite element method for crack growth without remeshing”. International journal for numerical methods in engineering, 46(1), 131-150.
[10]   Daux, C., Moës, N., Dolbow, J., Sukumar, N., & Belytschko, T. (2000). “Arbitrary branched and intersecting cracks with the extended finite element method”. International journal for numerical methods in engineering, 48(12), 1741-1760.
[11]   Sukumar, N., Moës, N., Moran, B., & Belytschko, T. (2000). “Extended finite element method for three‐dimensional crack modelling”. International journal for numerical methods in engineering, 48(11), 1549-1570.
[12]   Moës, N., & Belytschko, T. (2002). “Extended finite element method for cohesive crack growth”. Engineering fracture mechanics, 69(7), 813-833.
[13]   Budyn, E., Zi, G., Moës, N., & Belytschko, T. (2004). “A method for multiple crack growth in brittle materials without remeshing”. International journal for numerical methods in engineering, 61(10), 1741-1770.
[14]   Zi, G., Song, J. H., Budyn, E., Lee, S. H., & Belytschko, T. (2004). “A method for growing multiple cracks without remeshing and its application to fatigue crack growth”. Modelling and Simulation in Materials Science and Engineering, 12(5), 901.
[15]   Khoei, A. R., Moallemi, S., & Haghighat, E. (2012). “Thermo-hydro-mechanical modeling of impermeable discontinuity in saturated porous media with X-FEM technique”. Engineering Fracture Mechanics, 96, 701-723.
[16]   Watanabe, N., Wang, W., Taron, J., Görke, U. J., & Kolditz, O. (2012). “Lower‐dimensional interface elements with local enrichment: application to coupled hydro‐mechanical problems in discretely fractured porous media”. International Journal for Numerical Methods in Engineering, 90(8), 1010-1034.
[17]   Gordeliy, E., & Peirce, A. (2013). “Coupling schemes for modeling hydraulic fracture propagation using the XFEM”. Computer Methods in Applied Mechanics and Engineering, 253, 305-322.
[18]   Mohammadnejad, T., & Khoei, A. R. (2013). “An extended finite element method for fluid flow in partially saturated porous media with weak discontinuities; the convergence analysis of local enrichment strategies”. Computational Mechanics, 51(3), 327-345.
[19]   Mohammadnejad, T., & Khoei, A. R. (2013). “An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model”. Finite Elements in Analysis and Design, 73, 77-95.
[20]   Sarris, E., & Papanastasiou, P. (2012). “Modeling of hydraulic fracturing in a poroelastic cohesive formation”. International Journal of Geomechanics, 12(2), 160-167.
[21]   Carrier, B., & Granet, S. (2012). “Numerical modeling of hydraulic fracture problem in permeable medium using cohesive zone model”. Engineering fracture mechanics, 79, 312-328.
[22]   Mohammadnejad, T., & Khoei, A. R. (2013). “Hydro‐mechanical modeling of cohesive crack propagation in multiphase porous media using the extended finite element method”. International Journal for Numerical and Analytical Methods in Geomechanics, 37(10), 1247-1279.
[23]   Khoei, A. R., & Vahab, M. (2014). “A numerical contact algorithm in saturated porous media with the extended finite element method”. Computational Mechanics, 54(5), 1089-1110.
[24]   Mohammadnejad, T., & Andrade, J. E. (2016). “Numerical modeling of hydraulic fracture propagation, closure and reopening using XFEM with application to in‐situ stress estimation”. International Journal for Numerical and Analytical Methods in Geomechanics, 40(15), 2033-2060.
[25]   Khodabakhshnejad, A. (2016). “An extended finite element method based modeling of hydraulic fracturing” (Doctoral dissertation, University of Southern California).
[26]   Song, J. H., Areias, P. M., & Belytschko, T. (2006). “A method for dynamic crack and shear band propagation with phantom nodes”. International Journal for Numerical Methods in Engineering, 67(6), 868-893.
[27]   Fisher, M. K., Heinze, J. R., Harris, C. D., Davidson, B. M., Wright, C. A., & Dunn, K. P. (2004). “Optimizing Horizontal Completion Techniques in the Barnett Shale Using Microseismic Fracture Mapping”. Paper SPE 90051 presented at the SPE Annual Technical Conference and Exhibition, Houston, Texas, 26–29 September.
[28]   Lolon, E., Cipolla, C., Weijers, L., Hesketh, R. E., & Grigg, M. W. (2009, January). “Evaluating horizontal well placement and hydraulic fracture spacing/conductivity in the Bakken Formation”, North Dakota. In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers.
[29]   Cipolla, C. L., Lolon, E., Mayerhofer, M. J., & Warpinski, N. R. (2009, January). “Fracture design considerations in horizontal wells drilled in unconventional gas reservoirs”. In SPE Hydraulic Fracturing Technology Conference. Society of Petroleum Engineers.
[30]   Chen, Z., Bunger, A. P., Zhang, X., & Jeffrey, R. G. (2009). “Cohesive zone finite element-based modeling of hydraulic fractures”. Acta Mechanica Solida Sinica, 22(5), 443-452.
[31]   Sarris, E., & Papanastasiou, P. (2011). “The influence of the cohesive process zone in hydraulic fracturing modelling”. International Journal of Fracture, 167(1), 33-45.
[32]   Osholake, T., Yilin Wang, J., & Ertekin, T. (2013). “Factors affecting hydraulically fractured well performance in the Marcellus shale gas reservoirs”. Journal of Energy Resources Technology, 135(1).
[33]   Shin, D. H. (2013). “Simultaneous propagation of multiple fractures in a horizontal well”. Ph.D.thesis, University of Texas at Austin.
[34]   Haddad*, M., & Sepehrnoori, K. (2014, August). “Simulation of multiple-stage fracturing in quasibrittle shale formations using pore pressure cohesive zone model”. In Unconventional Resources Technology Conference, Denver, Colorado, 25-27 August 2014 (pp. 1777-1792). Society of Exploration Geophysicists, American Association of Petroleum Geologists, Society of Petroleum Engineers.
[35]   Hamidi, F., & Mortazavi, A. (2014). “A new three dimensional approach to numerically model hydraulic fracturing process”. Journal of Petroleum Science and Engineering, 124, 451-467.
[36]   Haddad, M., & Sepehrnoori, K. (2015). “Simulation of hydraulic fracturing in quasi-brittle shale formations using characterized cohesive layer: Stimulation controlling factors”. Journal of Unconventional Oil and Gas Resources, 9, 65-83
[37]   Yao, Y., Liu, L., & Keer, L. M. (2015). “Pore pressure cohesive zone modeling of hydraulic fracture in quasi-brittle rocks”. Mechanics of Materials, 83, 17-29.
[38]   Wang, X., Liu, C., Wang, H., Liu, H., & Wu, H. (2016). “Comparison of consecutive and alternate hydraulic fracturing in horizontal wells using XFEM-based cohesive zone method”. Journal of Petroleum Science and Engineering, 143, 14-25.
[39]   Wang, H. (2016). “Poro-elasto-plastic modeling of complex hydraulic fracture propagation: simultaneous multi-fracturing and producing well interference”. Acta Mechanica, 227(2), 507-525.
[40]   Saberhosseini, S. E., Keshavarzi, R., & Ahangari, K. (2017). “A fully coupled three-dimensional hydraulic fracture model to investigate the impact of formation rock mechanical properties and operational parameters on hydraulic fracture opening using cohesive elements method”. Arabian Journal of Geosciences, 10(7), 157.
[41]   Mehrgini, B., Memarian, H., Dusseault, M. B., Sheikhmali, R., Eshraghi, H., Ghavidel, A., ... & Badsar, A. (2017, August). “Hydraulic fracture geometry and geomechanical characteristics of carbonate reservoir rock”. In 51st US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association.
[42]   Feng, Y., & Gray, K. E. (2017, August). “Modeling near-wellbore hydraulic fracture complexity using coupled pore pressure extended finite element method”. In 51st US rock mechanics/geomechanics symposium. American Rock Mechanics Association.
[43]   Carrier, B., & Granet, S. (2012). “Numerical modeling of hydraulic fracture problem in permeable medium using cohesive zone model”. Engineering fracture mechanics, 79, 312-328.
[44]   Chen, Z. (2013, May). “An ABAQUS implementation of the XFEM for hydraulic fracture problems”. In ISRM International Conference for Effective and Sustainable Hydraulic Fracturing. International Society for Rock Mechanics and Rock Engineering.
[45]   Barenblatt, G. I. (1959). “The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses”. Axially-symmetric cracks. Journal of Applied Mathematics and Mechanics, 23(3), 622-636.
[46]      Barenblatt, G. I. (1962). “The mathematical theory of equilibrium cracks in brittle fracture”. Advances in applied mechanics, 7(1), 55-129.
[47]   Hillerborg, A., Modéer, M., & Petersson, P. E. (1976). “Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements”. Cement and concrete research, 6(6), 773-781.