بررسی عددی تأثیر اسیدکاری بر نفوذپذیری درزه‌سنگ‌ها حین حرکت برشی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی معدن، دانشگاه صنعتی اصفهان، اصفهان، ایران

چکیده

در یک توده سنگ درزه‌دار، عمدتاً نفوذپذیری از طریق شبکه‌ی درزه یا از طریق مجموعه درزه‌های به‌هم‌پیوسته که به‌صورت کانال‌های جریان درآمده‌اند، صورت می‌گیرد. بررسی وضعیت نفوذپذیری و جریان سیال درون درزه‌های سنگ یکی از پارامترهای مهم و تأثیرگذار در بسیاری از فعالیت‌های مهندسی ازجمله حفاری‌های زیرزمینی، بازیابی و استخراج از مخازن هیدروکربوری و منابع زمین‌گرمایی به شمار می‌رود. اسیدکاری درزه‌سنگ‌ها به‌منظور افزایش میزان نفوذپذیری مخازن صورت می‌گیرد و یک روش کلیدی برای افزایش بهره‌برداری منابع هیدروکربنی است. با توجه به این‌که چاه‌های نفت ایران اغلب در سازند‌های کربناتی قرار دارند، یکی از بهترین روش‌ها برای انگیزش چاه‌ها، اسیدکاری در آنها است. به همین منظور مطالعات آزمایشگاهی و عددی مختلفی باهدف بررسی تأثیر اسیدکاری بر رفتار هیدرولیکی درزه‌ها انجام‌گرفته است. درعین‌حال در اثر جابجایی درزه‌سنگ‌ها، الگوی جریان سیال و میزان جریان عبوری از درزه‌های آسیب‌دیده، تغییر می‌کند که این مورد در مطالعات انجام‌شده درگذشته با شرایط مذکور، موردبررسی قرار نگرفته و هدف اصلی این پژوهش است. در این مطالعه، نمونه‌های مختلف درزه طبیعی به‌وسیله روش کشش غیرمستقیم بر سنگ‌آهک آسماری که سنگ مخزن میدان‌های نفتی جنوب ایران می‌باشد، تهیه شده است. بعد از اسیدکاری به‌وسیله سلول اسیدکاری توسعه داده‌شده، میزان جریان عبوری سیال در شرایط اولیه اندازه‌گیری شد. یک کد عددی بر مبنای روش المان محدود در محیط متلب به‌منظور بررسی عددی تأثیر نرخ برش درزه بر رفتار هیدرولیکی درزه‌ها در شرایط قبل و بعد از اسیدکاری نیز توسعه داده ‌شده است. نتایج عددی با نتایج آزمون‌های آزمایشگاهی اعتبارسنجی شده است. نتایج نشان می‌دهد که با افزایش نرخ برش در هر دو شرایط قبل و بعد از اسیدکاری، میزان دبی عبوری روندی افزایشی دارد. همچنین الگوی جریان سیال با افزایش میزان برش به سمت کانالیزه شدن می‌رود. بعد از اسیدکاری سطح درزه، اختلاف ضریب زبری و زبری خطی سطوح شکستگی بیشتر شده است که باعث افزایش مقدار هدایت هیدرولیکی اولیه شکستگی می‌گردد و تغییرات دبی دارای شیب کمتری نسبت به شرایط مشابه در حالت قبل از اسیدکاری است. در برخی موارد، روند تغییرات دبی در شرایط بعد از اسیدکاری، از الگوی کلی تغییرات دبی پیروی نمی‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical study of the effect of acidizing on the permeability of rock joints during shear displacement

نویسندگان [English]

  • Alireza Baghbana
  • Amirhossein Momeni
  • Omid Jafaraghaei
  • Ebrahim Esadollahpour
Dept. of Mining Engineering, Isfahan University of Technology, Isfahan, Iran
چکیده [English]

Summary
A numerical code based on the finite element method in MATLAB software has been developed to investigate the effect of joint shear rate on the hydraulic behavior of joints in pre/post-acidizing conditions.
 
Introduction
Evaluation of permeability and fluid flow behavior in rock joints is one of the most critical and fundamental issues in many rock engineering projects. In recent years, changes in the permeability of rock joints and mechanical deformations of the rock mass with the effects of chemical reaction have been studied by H-M-C process. Shear-flow coupling tests are generally performed under conditions where the flow direction is either parallel to the cutting direction or radially from the center of the joint sample due to the limitations of difficult laboratory conditions. One of these difficulties is the complete insulation of the sample to create a one-dimensional linear flow in the direction of the shearing. Numerical simulations can eliminate laboratory difficulties with flow sealing conditions. In this paper, the influence of chemical agents on fluid flow while the shearing process is applied. Due to the difficulties of implementing this issue, modeling has been done by developing a computational code using the finite element method.
 
Methodology and Approaches
Designing a coupling process with simultaneous effect of hydro-mechanical-chemical phenomena, numerical modeling based on the finite element method has been used to study the effect of shear displacement on fluid flow rate when fracture surfaces are degraded. The hydraulic head pressure (equal to one meter of water) is applied to the flow's input, and zero pressure is applied to the flow's outflow to simulate and quantify the flow rate from the fracture's left to right. The upper and lower boundaries of the fracture are also sealed. In the next step, because the fluid flow is to be examined separately in the X and Y directions, then, in each step, the flow in the conduct of outlets must be opened in the desired direction and closed in the other directions. To apply the effect of shear displacement on the flow rate, a secondary code based on the changes in the elements due to shear displacement was used and added it to the computational process of the developed primary code. The aperture values in each step are calculated and returned to the original code to calculate the flow rate step by step.
 
Results and Conclusions
The results show that with increasing the shearing rate in both conditions before and after acidizing, the flow rate has an increasing trend. Also, the fluid flow pattern goes channelized with an increasing shear rate. After acidizing the joint surface, the difference between the roughness coefficient and the linear roughness of the two fracture surfaces increases, which increases the initial hydraulic conductivity of the fracture, and flow changes shows a lower trend compared with the conditions in the pre-acid state. In some cases, the trend of discharge rates in the conditions after acidizing does not follow the general pattern of discharge rates. It seems it’s caused by closures which are created by shear displacement in the fluid flow path, forcing the fluid to change direction and find a new path to pass through the joint.

کلیدواژه‌ها [English]

  • permeability
  • acidizing
  • shear displacement
  • numerical modeling
  • cubic law

وجود جریان‌های زیرزمینی یک پدیده قطعی و تأثیرگذار در بسیاری از مناطق زمین است و این جریان‌ها می‌توانند وضعیت و ساختار زمین و درنتیجه سازه‌های ساخته‌شده در اطراف آن محیط را تحت تأثیر قرار دهند. ازجمله این تأثیرات می‌توان ایجاد حرکت‌های افقی در راستای درزه‌ها، بازشدگی درزه‌ای جدید در اثر فشار و جریان دائم، انتقال سیال‌های حاوی مواد حل‌کننده به مناطق دیگر و درنتیجه برهم‌زنی تنش‌های برجا را اشاره کرد.

[1]     Esaki, T. S. Du, Y. Mitani, K. Ikusada, and Li Jing. "Development of a shear-flow test apparatus and determination of coupled properties for a single rock joint." International Journal of Rock Mechanics and Mining Sciences 36, no. 5 (1999): 641-650.
[2]     Olsson, R., and N. Barton. "An improved model for hydromechanical coupling during shearing of rock joints." International journal of rock mechanics and mining sciences 38, no. 3 (2001): 317-329.
[3]     Lee, H. S., and T. F. Cho. "Hydraulic characteristics of rough fractures in linear flow under normal and shear load." Rock mechanics and rock engineering 35, no. 4 (2002): 299-318.
[4]     Li, Bo, Yujing Jiang, Tomofumi Koyama, Lanru Jing, and Yoshihiko Tanabashi. "EX perimental study of the hydro-mechanical behavior of rock joints using a parallel-plate model containing contact areas and artificial fractures." International Journal of Rock Mechanics and Mining Sciences 45, no. 3 (2008): 362-375.
[5]     Koyama, Tomofumi, Yuzo Ohnishi, and Lanru Jing. "Numerical modeling for fluid flow and particle transport in rock fractures during shear." (2008).
[6]     Mehranpour, M. H. "Introduction of new roughness parameters to quantify rock joints surface using Fourier analysis." In 50th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association, 2016.
[7]     Yu, Qifeng. "Computational Simulations of Shear Behaviour of Joints in Brittle Geomaterials." PhD diss., McGill University Libraries, 2001.
[8]     Kulatilake, P. H. S. W., J. Um, and George Pan. "Requirements for accurate estimation of fractal parameters for self-affine roughness profiles using the line scaling method." Rock mechanics and rock engineering 30, no. 4 (1997): 181-206.
[9]     Yeo, I. W., M. H. De Freitas, and R. W. Zimmerman. "Effect of shear displacement on the aperture and permeability of a rock fracture." International Journal of Rock Mechanics and Mining Sciences 35, no. 8 (1998): 1051-1070.
[10]     Kim, Hyung-Mok, Junya Inoue, and Hideyuki Horii. "Flow analysis of jointed rock masses based on eX cavation-induced transmissivity change of rough joints." International Journal of Rock Mechanics and Mining Sciences 41, no. 6 (2004): 959-974.
[11]     Neretnieks, Ivars, Tryggve Eriksen, and Päivi Tähtinen. "Tracer movement in a single fissure in granitic rock: Some eX perimental results and their interpretation." Water resources research 18, no. 4 (1982): 849-858.
[12]     Crandall, Dustin, Grant Bromhal, and Zuleima T. Karpyn. "Numerical simulations eX amining the relationship between wall-roughness and fluid flow in rock fractures." International Journal of Rock Mechanics and Mining Sciences 47, no. 5 (2010): 784-796.
[13]     Zhao, Zhihong, Lanru Jing, Ivars Neretnieks, and Luis Moreno. "Analytical solution of coupled stress-flow-transport processes in a single rock fracture." Computers & geosciences 37, no. 9 (2011): 1437-1449.
[14]     Figueiredo B, Tsang CF, Rutqvist J, Niemi A. A study of changes in deep fractured rock permeability due to coupled hydro-mechanical effects. International Journal of Rock Mechanics and Mining Sciences. 2015 Oct 31;79:70-85.
[15]     Elsworth, Derek. "Some THMC controls on the evolution of fracture permeability." In Elsevier Geo-Engineering Book Series, vol. 2, pp. 63-71. Elsevier, 2004.
[16]     Mohtarami, E., A. Baghbanan, M. Akbariforouz, H. Hashemolhosseini, and E. Asadollahpour. "Chemically dependent mechanical properties of natural andesite rock fractures." Canadian Geotechnical Journal 55, no. 6 (2018): 881-893.
[17]     Asadollahpour E, "Investigating the effect of chemicals on the properties and fluid flow in rock fractures using experimental and Numerical Methods", PhD Thesis, IUT, 2018, (In Persian).
[18]     Asadollahpour, E., A. Baghbanan, H. Hashemolhosseini, and E. Mohtarami. "The etching and hydraulic conductivity of acidized rough fractures." Journal of Petroleum Science and Engineering 166 (2018): 704-717.
[19]     Jia, Cunqi, Kamy Sepehrnoori, Zhaoqin Huang, Haiyang Zhang, and Jun Yao. "Numerical studies and analysis on reactive flow in carbonate matriX  acidizing." Journal of Petroleum Science and Engineering 201 (2021): 108487.
[20]     Jia, Cunqi, Zhaoqin Huang, Kamy Sepehrnoori, and Jun Yao. "Modification of two-scale continuum model and numerical studies for carbonate matriX  acidizing." Journal of Petroleum Science and Engineering 197 (2021): 107972.
[21]     Panga, Mohan KR, Murtaza Ziauddin, and Vemuri Balakotaiah. "Two‐scale continuum model for simulation of wormholes in carbonate acidization." AIChE journal 51, no. 12 (2005): 3231-3248.
[22]     Aljawad, Murtada Saleh, Mateus Palharini Schwalbert, Mohamed Mahmoud, and Abdullah Sultan. "Impacts of natural fractures on acid fracture design: A modeling study." Energy Reports 6 (2020): 1073-1082.
[23]     Lu, Cong, Xiang Bai, Yang Luo, and Jianchun Guo. "New study of etching patterns of acid-fracture surfaces and relevant conductivity." Journal of Petroleum Science and Engineering 159 (2017): 135-147.
[24]     Qi, Ning, Guobin Chen, Lin Pan, Mingyue Cui, Tiankui Guo, Jun Yan, and Chong Liang. "Numerical simulation and analysis of fracture etching morphology during acid fracturing of dolomite reservoirs." Chemical Engineering Science 229 (2021): 116028.
[25]     Lu, Cong, Li Ma, Jianchun Guo, Senwen Xiao, Yunchuan Zheng, and Congbin Yin. "Effect of acidizing treatment on microstructures and mechanical properties of shale." Natural Gas Industry B 7, no. 3 (2020): 254-261.
[26]     Javadi, M., Sharifzadeh, M. and Shahriar, K., 2010. A new geometrical model for non-linear fluid flow through rough fractures. Journal of Hydrology, 389(1-2), pp.18-30.
[27]     Koyama, T., Li, B., Jiang, Y. and Jing, L., 2008. Coupled shear-flow tests for rock fractures with visualization of the fluid flow and their numerical simulations. International Journal of Geotechnical Engineering, 2(3), pp.215-227.
[28]     Watanabe, N., Hirano, N. and Tsuchiya, N., 2008. Determination of aperture structure and fluid flow in a rock fracture by high‐resolution numerical modeling on the basis of a flow‐through experiment under confining pressure. Water Resources Research, 44(6).
[29]     Zimmerman, R.W. and Bodvarsson, G.S., 1996. Hydraulic conductivity of rock fractures. Transport in porous media, 23(1), pp.1-30.
[30]     Pyrak-Nolte, L.J. and Morris, J.P., 2000. Single fractures under normal stress: The relation between fracture specific stiffness and fluid flow. International Journal of Rock Mechanics and Mining Sciences, 37(1-2), pp.245-262.
[31]     Watanabe, N., Hirano, N. and Tsuchiya, N., 2009. Diversity of channeling flow in heterogeneous aperture distribution inferred from integrated experimental‐numerical analysis on flow through shear fracture in granite. Journal of Geophysical Research: Solid Earth, 114(B4).
[32]     Koyama, T., Li, B., Jiang, Y. and Jing, L., 2009. Numerical modelling of fluid flow tests in a rock fracture with a special algorithm for contact areas. Computers and Geotechnics, 36(1-2), pp.291-303.
[33]     S. R. J. J. o. G. R. S. E. Brown, "Fluid flow through rock joints: the effect of surface roughness," Journal of Geophysical Research: Solid Earth, vol. 92, no. B2, pp. 1337-1347, 1987.