تخمین موقعیت گسل‌ها بر اساس پراکندگی درزه‌ها با استفاده از ضریب ثابت فیشر (K)

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی معدن و متالورژی، دانشگاه یزد، یزد، ایران

چکیده

در مدل‌سازی هندسی ناپیوستگی‌های توده سنگ، سعی بر این است که ساختارهای اصلی زمین‌شناسی همچون گسل‌ها، شناخته شده تا به‌تبع آن بتوان مناطق همگن آماری با ویژگی‌های تقریباً یکسان درزه‌داری را مشخص کرد. گسل‌ها و بعضی دیگر از ساختارهای اصلی زمین‌شناسی غالباً به‌صورت مرزهای طبیعی یک بلوک تکتونیکی عمل می‌کنند و بسته به مقیاس می‌توانند مناطقی با ویژگی‌های درزه‌داری مختلف را در کنار یکدیگر قرار دهند؛ بنابراین سیستم درزه‌ها به‌عنوان مجموعه‌های محدود به ساختارهای بزرگ تکتونیکی (گسل‌ها،‌ چین‌خوردگی‌ها و ...)، بهترین شاخص تفکیک مناطق همگن است. پارامترهای هندسی متعددی از قبیل شیب، جهت شیب، فاصله‌داری و گسترش درزه‌ها برای تشخیص گسل‌ها مؤثرند. ضریب ثابت تابع توزیع فیشر (K) به‌عنوان ضریبی که شیب و جهت شیب ناپیوستگی‌ها را نمایندگی می‌کند، نشان دهنده چگونگی توزیع و میزان پراکندگی درزه‌ها است و به‌عنوان پارامتر شاخص در خصوص رفتار‌شناسی هندسی ناپیوستگی‌ها محسوب می‌شود. بر اساس شواهد، جهت‌داری سیستم درزه‌ها در نزدیکی ساختارهای تکتونیکی به‌هم‌ریخته و با فاصله گرفتن از آنها منظم می‌شود. این موضوع به‌عنوان فرضیه این تحقیق در نظر گرفته شد و ضریب فیشر به‌عنوان اصلی‌ترین عامل تشخیص و تفکیک سیستم درزه‌ها مورداستفاده قرار گرفت. به‌منظور صحت سنجی فرضیه مطرح‌شده، با استفاده از داده‌های هندسی ناپیوستگی‌ها، برداشت‌شده از چهار معدن سه چاهون، چغارت، فسفات اسفوردی و میدوک، توزیع ضریب K در این معدن‌ها به دست آمد و خطوط هم ضریب فیشر رسم شدند. بدین ترتیب مناطق با تمرکز بالای ضریب K در هر معدن به‌عنوان مرکز سیستم درزه‌ها تعیین شد. با مقایسه بلوک‌های تکتونیکی محصورشده بین گسل‌های هر معدن و انطباق نسبی آن با مناطق تفکیک‌شده به روش پیشنهادی، کارایی این روش جهت تشخیص سیستم درزه‌ها و تخمین موقعیت ساختارهای بزرگ تکتونیکی به‌خوبی امکان‌پذیر شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimating the location of faults based on the distribution of joints using Fisher's constant coefficient (K)

نویسندگان [English]

  • Fahimeh Dabiri
  • Alireza Yarahmadi Bafghi
Dept. of Mining and Metallurgical Engineering, Yazd University, Yazd, Iran
چکیده [English]

Summary
The system of joints, as homogeneous statistical collections limited to large tectonic structures, are the best indicators for separating these areas. According to the evidence, the orientation of the joint system is disrupted near the tectonic structures. This issue was considered as the hypothesis of this study and Fisher coefficient was used as the main factor in the diagnosis of the joint system. In order to validate the hypothesis, using geometrical data of discontinuities taken from four mines, the distribution of K coefficient was achieved in these mines. Thus, areas with high concentration of K coefficient in each mine were determined as the cross points of the faults.
 
Introduction
Discontinuities are the most important factor in the disorder and the impossibility of achieving ideal conditions. Sometimes in geomechanical study areas, joint studies are performed before tectonic studies. The reason is the lack of necessary outcrops to identify the tectonics of the area or uncertainties in their location. Therefore, the problem is to find a solution to estimate the position of large-scale structures, especially faults. From this perspective, in previous research, several points have been proposed to identify such structures:

Joint density usually increases in areas near the faults.
The distribution of discontinuity dip and dip direction, near the faults is generally severe.
Alteration and weathering are high in the areas around the faults.

 
Methodology and Approaches
In this study, increasing the distribution of discontinuity dip and dip direction and its relationship with the location of large tectonic structures has been used as a hypothesis. The Fisher coefficient (K) represents the scatter of the Fisher variable distribution function. Logically, in tectonized regions and fault zones (fault crossing areas), the distribution of the dip and dip direction of the joints is higher. As a result, the Fisher constant (K) decreases at the fault crossing point and increases at the inter fault zone. Based on this feature, areas with more tectonic mobility can be separated from structural calm areas and the Fisher's constant coefficient is introduced as a parameter determining the order of discontinuities.
 
Results and Conclusions
By taking primary data, including the dip and dip direction of the discontinuities from the four mines of Sechahoon, Ghoghart, Meiduk, and Esfordi phosphates, the distribution of K coefficient and drawing the contour lines based on the Fisher coefficient, the fault system in the study area was identified. Thus, areas with a high concentration of K coefficient in each mine were considered as fault crossings. By comparing the tectonic blocks enclosed between the faults of each mine and its relative compatibility with the separated areas by the proposed method, the efficiency of this method to identify the joint system and estimate the position of large tectonic structures was well achieved.

کلیدواژه‌ها [English]

  • Joint system
  • Tectonic structures
  • Fisher constant (K)
  • Choghart mine
  • Esphordi phosphate mine
  • Sechahoon mine
  • Meiduk mine

در مکانیک جامدات محیط ایده آل محیطی پیوسته، همگن و همسانگرد است؛ اما شواهد نشان می‌دهد که در محیط‌های سنگی این شرایط وجود نداشته و ناپیوستگی‌ها مهم‌ترین عامل در بی‌نظمی و عدم امکان دسترسی به شرایط ایده آل می‌باشند [1]. ناپیوستگی‌ها عبارت‌اند از یک سطح جدایش در سنگ دست‌نخورده که در دو بعد توسعه بیشتری یافته‌ و در مقایسه با ماده سنگ دارای مقاومت برشی و کششی کمتری می‌باشند [2].

[1]     Jing  L, Stephansson O. 2007.Fundamentals of discrete element methods for rock engineering: theory and applications. Amsterdam: Elsevier Science, Developments in Geotechnical Engineering.
[2]     Anders, M. H., Laubach, S. E., & Scholz, C. H. Microfractures. A review .2014. Journal of Structural Geology, 69, 377-394.
[3]     Jorge M.F. Carvalho. 2018. Jointing patterns and tectonic evolution of the Maciço Calcário Estremenho, Lusitanian Basin, Portugal. Journal of Structural Geology 110 155–171.
[4]     Peacock, D.C.P. 2001. The temporal relationship between joints and faults. Journal of Structural Geology 23, 329-341.
[5]     Jan M. Vermilye and Christopher H. Scholz. 1998. The process zone: A microstructural view of fault growth. Journal of Geophysics Researchs, v. 103, n. B6, pp 12,223-12,237.
[6]     Marieke Rempe   et all. 2018. The Relationship Between Microfracture Damage and the Physical Properties of Fault-Related Rocks: The Gole Larghe Fault Zone, Italian Southern Alps. Journal of Geophysical Research: Solid Earth.
[7]     Young D.S. 1990. Joint Modelling for Rock Mechanics, In Rossmannith H.P.(ed) , Mechanics of Jointed and Faulted Rock , Proc.int.conf., Vienna ,Balkema ,Rotterdam , pp. : 543-550.
[8]     Steno, N. 1669. De solido intra solidum naturaliter contento dissertationis prodromus. Florence, Italy.
[9]     Anderson EM, 1905. The dynamics of faulting. Transactions of the Edinburgh Geological Society 8: 340–387.
[10]     Roberts J. C. 1966. A study of the relation between jointing and structural evolution.
[11]     Brock, W. G. & Engelder, T. 1977. Deformation associated with the movement of the Muddy Mountain overthrust in the Burlington window, southeastern Nevada. Bull. Geol. Soc. Am. 88, 1667-1677.
[12]     Pohn, H. A. 1981. Joint spacing as a method of locating faults. Geology 9,258-261.
[13]     Bartlett, W. L., Friedman, M. & Logan, J. M. 1981. Experimental folding and faulting of rocks under confining pressure: Part IX: wrench faults in limestone layers. Tectonophysics 79,255-277.
[14]     Hancock, P. L. 1985. Brittle microtectonics: principles and practice. J. Struct. Geol. 7, 437-457.
[15]     Rawnsley, K.D., Peacock, D.C.P., Rives, T., Petit, J.P., 1998. Jointing in the Mesozoic sediments around the Bristol Channel Basin. Journal of Structural Geology 20, 1641-1661.
[16]     Reches, Z., Lockner, D.A., 1994. Nucleation and growth of faults in brittle rocks. Journal of Geophysical Research 99, 18159-18174.
[17]     Anders, M. H. & Wiltschko, D. V.1994. Microfracturing, paleostress and the growth of faults.
[18]     Fisher, R.A., 1953. Dispersions on a sphere. Proc. R. Soc. London, Ser. A 217, 295_305.
[19]     Mardia, K.V., Nyirongo, V.B., Walder, A.N., Xu, C., Dowd, P.A., Fowell, R.J., Kent, J.T., 2007."Markov Chain Monte Carlo implementation of rock fracture modeling". Mathematical Geology, 39, p. 355–381.
[20]     A. R. Yar ahmadi bafghi, H. Karampour rad, Investigation of Spatial Correlation of Discontinuities Geo metrical Parameters (Case Study: Tectonic Block No. I in Choghart Iron Ore Mine ), 2rd Mining Engineering Conference, 2008, p. 605-611.