طراحی محتمل‌ترین محدوده نهایی معادن روباز در فضای عدم قطعیت قیمت محصول نهایی معدن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی معدن و متالورژی، دانشگاه یزد، یزد، ایران

2 دانشکده علوم ریاضی، دانشگاه یزد، یزد، ایران

چکیده

طراحی و برنامه‌ریزی تولید در معادن روباز در شرایط عدم قطعیت قیمت محصول نهایی یکی از چالش‌های مهم در حوزه معدنکاری است به‌طوری‌که طراحی و برنامه‌ریزی در معدن بدون در نظر گرفتن عدم قطعیت قیمت، منجر به ارزیابی‌های اشتباه، برنامه‌ای غیرواقعی و غیرعملیاتی در شرایط نوسانات بازار شده و درنتیجه، ریسک سرمایه‌گذاری افزایش می‌یابد. تعیین محدوده نهایی برای مشخص نمودن میزان ذخیره قابل‌استخراج و جانمایی تأسیسات سطحی است. برای حل این مسئله از الگوریتم‌های ابتکاری، فر ابتکاری و روش‌های دقیق ریاضی استفاده‌شده است؛ اما این روش‌ها کمتر توانسته‌اند منجر به ارائه پیتی شوند که در فضای عدم قطعیت قیمت محصول نهایی معدن، باثبات‌ترین پیت باشد. در این مقاله الگوریتم ریاضی مبتنی بر شبیه‌سازی مونت‌کارلو و الگوریتم لرچ و گراسمن ارائه شد که قادر است بر اساس تاریخچه قیمت فلز در گذشته و تخمین تابع توزیع آن، ارزش قابل‌انتظار بلوک‌ها و احتمال استخراج هر بلوک را محاسبه کرده و محتمل‌ترین پیت نهایی را برای معدن به دست آورد. این پیت می‌تواند مبنای برنامه‌ریزی تولید بلند‌مدت معدن و همچنین معیاری برای جانمایی تأسیسات سطحی باشد. مدل ارائه‌شده روی یک معدن مس پورفیری اجرا شد و نتایج نشان داد که تعداد بلوک‌هایی که احتمال استخراج آنها 100 درصد است، نسبت به کل بلوک‌های موجود در مدل، کم است که این نشانگر حساسیت بالای پیت نسبت به عدم قطعیت قیمت است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Designing the most probable final pit limit of open pit mines considering price uncertainty

نویسندگان [English]

  • Javad Gholamnejad 1
  • Elham lotfi 1
  • Mehdi Najafi 1
  • Mohammad sadegh Zamani 2
1 Dept. of Mining and Metallurgical Engineering, Yazd University, Yazd, Iran
2 Dept. of mathematical sciences, Yazd University, Yazd, Iran
چکیده [English]

Summary
Open pit design and production scheduling considering the commodity price uncertainty is one of the important issues in the field of open pit mining, so that mine design and planning regardless of price uncertainty leads to erroneous assessments and non-operational production scheduling, which itself increases the investment risk. The amount of reserve that can be extracted and the location of surface facilities directly depends on the final pit limit. In this paper, a mathematical algorithm based on Monte Carlo Simulation and Lerch and Grossman algorithm is presented, which is able to calculate the expected value of blocks based on the metal price history and estimating its distribution function and get the most likely final pit limit. This pit can be the basis of long-term mine production planning as well as a criterion for locating surface facilities.
 
Introduction
The aim of the planning process for an open pit mine is usually to find optimum annual schedules that will give the highest Net Present Value (NPV). The primary input of this procedure is an economic block model, which includes a set of mining blocks representing the ore body and the surrounding rock. Net economic value is assigned to each block based on the revenue of recoverable metal content in a given block and subtracting all the operating costs, comprising mining, processing, refining, and selling costs. An economic evaluation of each block requires the estimation of ore tonnage and grade of mining blocks as well as some economic parameters such as metal prices and operation costs. In the current pit design approaches, the block economic values are calculated using a fixed known value. In this paper, using the metal prices in the past as well as the Monte Carlo simulation method, the most probable ultimate pit is obtained.
 
Methodology and Approaches
In this article, the price distribution function of the metal price (copper) was obtained using the metal price history. Then 100 prices were simulated using Monte Carlo simulation and the expected value of each block was obtained using these simulated values of other fixed technical and economic parameters. Finally, by using these values and using the NPV Scheduler software, a single optimal pit was obtained.
 
Results and Conclusions
In this article, the expected value of the blocks was obtained using the Monte Carlo simulation method, and then the optimal pit, which is actually the most probable pit, was obtained. Because the price history of the metal is considered in the design process, the obtained pit has little sensitivity to the changes in the price of the metal in the future.

کلیدواژه‌ها [English]

  • Final pit limit
  • metal price uncertainty
  • block expected value
  • Monte-Carlo simulation

پروژه‌های معدنی یکی از پر ریسک‌ترین و درعین‌حال سودآورترین زمینه‌های سرمایه‌گذاری در دنیا محسوب می‌شوند. منشأ عمده‌ی این ریسک‌ها مرتبط با نوسانات قیمت محصول در معدن [1,2] و هزینه‌های تولید است [3,4]. طراحی در معادن روباز، شامل تعیین محدوده بهینه نهایی و برنامه‌ریزی تولید، یک مسئله بزرگ‌مقیاس است که به دلیل بزرگی ابعاد مسئله و پیچیدگی حل آن در مقیاس واقعی، قابل‌حل نیست و در عمل به مسائل کوچک‌تری تقسیم شده و هر یک از این زیر مسئله‌ها با روش‌های خاصی حل می‌شوند.

[1]     Abdel Sabour, S.A. & Poulin R, Sabour, S. A. and Poulin R., 2006. “Valuing real capital investments using the least-squares Monte Carlo method,” .The Engineering Economist , No 51, PP:pp.141–160.
[2]     Haque MA, Topal E, Lilford E., 2014. “A numerical study for a mining project using real options valuation under commodity price uncertainty” .Resources Policy, 39:pp.115–123.
[3]     Maybee B, Dunn P, Dessureault S, Robinson D., 2009. “Impact of development strategies on the value of underground mining projects” .International Journal of Mining and Mineral Engineering, 1:pp.219–231.
[4]     Tapia Cortez CA, Saydam S, Coulton J, Sammut C., 2018. “Alternative techniques for forecasting mineral commodity prices” .International Journal of Mining Science and Technology, 28:pp.309–322.
[5]     Dimitrakopoulos RG, Abdel Sabour SA., 2007. “Evaluating mine plans under uncertainty: Can the real options make a difference?” .Resources Policy, 32:pp.116–125.
[6]     Del Castillo F, Dimitrakopoulos R., 2014. “Joint effect of commodity price and geological uncertainty over the life of mine and ultimate pit limit” .Transactions of the Institutions of Mining and Metallurgy, Section A: Mining Technology, 123:pp.207–219.
[7]     Akbari A, Osanloo M, Shirazi M., 2008. “Determination of Ultimate Pit Limits in Open Mines Using Real Option Approach” .IUST International Journal of Engineering …, 19:pp.23–38.
[8]     Franco-Sepulveda G, Campuzano C, Pineda C., 2017. “NPV risk simulation of an open pit gold mine project under the O’Hara cost model by using GAs” .International Journal of Mining Science and Technology, 27:pp.557–565.
[9]     Zare Naghadehi M, Dehghani H, Naderipour R., 2017. “The Probabilistic Analysis of Block Economic Value (BEV) in Open-Pit Mines Considering the Effect of Uncertainties in Metal Price and Operational Costs” .Journal of Aalytical and Numerical Methods in Mining Engineering, 7:pp.15–26.
[10]     Lerchs, H., Grossmann L., 1965. “Optimum Design of Open-Pit Mines. CIM Bulletin,” .CIMBulletin,pp.47-54.
[11]     Johnson, T.B., 1968. “Optimum open pit mine production scheduling. PhD thesis, Berkeley University.” .
[12]     Picard JC., 1976. “MAXIMAL CLOSURE OF A GRAPH AND APPLICATIONS TO COMBINATORIAL PROBLEMS.” .Management Science, 22:pp.1268–1272.
[13]     Giannini LL., 1990. “Optimum design of open pit mines. PhD Dissertation,” .Curtin University of Technology, Perth.
[14]     Huttagosol P, Cameron R., 1992. “A computer design of ultimate pit limit by using transportation algorithm” .Proceedings of 23rd APCOM symp, Tucson, Arizona,pp.443–460.
[15]     Underwood R, Tolwinski B., 1998. “A mathematical programming viewpoint for solving the ultimate pit problem” .European Journal of Operational Research, 107:pp.96–107.
[16]     Hochbaum DS, Chen A., 2000. “Performance analysis and best implementations of old and new algorithms for the open-pit mining problem” .Operations Research, 48:pp.894–914.
[17]     Pana MT., 1965. “The simulation approach to open-pit design,” .5th APCOM, Tucson, Arizona USA, ZZI-ZZ24.
[18]     Berlanga JM, Cardona R, Ibarra MA., 1989. “Recursive formulae for the floating cone algorithm” .International Journal of Surface Mining, Reclamation and Environment, 3:pp.141–150.
[19]     Yamatomi J, Mogi G, Akaike A YU., 1995. “Selective Dimensional, extraction dynamic cone algorithm for three open pit designs.” .25th APCOM,pp.267–274.
[20]     Wright EA., 1999. “MOVING CONE II-A simple algorithm for optimum pit limits design” .Proceedings of the 28th Symposium on the application of computers and operations research in the mineral industries (APCOM),(Colorado USA),pp.367–374.
[21]     David, M., Dowd, P. A., and Korobov S., 1974. “pit optimization using discounted economic block values”.” .Mining Technology, 118(1):pp.1-12.
[22]     Dowd, P.A., Onur AH., 1993. “Open pit optimization – Part 1: Optimal open pit design.” .IMM Transactions, vol.102:pp.A95-A104.
[23]     Denby B, Schofield D., 1994. “Open-pit design and scheduling by use of genetic algorithms” .Transactions - Institution of Mining & Metallurgy, Section A, 103:pp.A21– A26.
[24]     Frimpong S, Achireko PK., 1997. “The MCS/MFNN algorithm for open pit optimization” .International Journal of Surface Mining, Reclamation and Environment, 11:pp.45–52.
[25]     Askari-Nasab H, Awuah-Offei K., 2009. “Open pit optimisation using discounted economic block values” .Transactions of the Institutions of Mining and Metallurgy, Section A: Mining Technology, 118:pp.1–12.
[26]     Sayadi AR, Fathianpour N, Mousavi AA., 2011. “Open pit optimization in 3d using a new artificial neural network” .Archives of Mining Sciences, 56:pp.389–403.
[27]     Mousavi Nogholi AA., 2015. “Optimisation of open pit mine block sequencing. PhD thesis, Queensland University of Technology.” .
[28]     Roman RJ., 1974. “The role of time value of money in Pit, determining an open-pit mining sequence and limits,” .12th APCOM, Color. Sch. Mines Golden, Color. C72-C85.
[29]     Koenigsberg E., 1982. “Optimum Contours of an Open Pit Mine: an Application of Dynamic Programming.” .Application of Computers and Operations Research in the Mineral Industry,pp.274–287.
[30]     Caccetta L, Giannini LM., 1988. “An application of discrete mathematics in the design of an open pit mine” .Discrete Applied Mathematics, 21:pp.1–19.
[31]     Erarslan, K. and Celebi N., 2001. “A simulative model for optimum open pit design.” .CIM Bull, 49:pp.56-68.
[32]     Elkington, T., & Durham R., 2011. “Integrated open pit pushback selection and production capacity optimization.” .Journal of Mining Science, 47(2),:pp.177-190.
[33]     Whittle J., 1988. “Beyond optimization in open pit design,” .1st CAMI,
[34]     K. D., 2000. “Open pit optimization—strategies for improving economics of mining projects through mine planning” .Application Computers for Mining Industry,pp.117–121.
[35]     Brennan, M.J., Schwartz ES., “Evaluating natural resource investments.” .J Bus, 58 (2),:pp.135–157.
[36]     Moel, A. and Tufano P., 2002. “When are real options exercised? An empirical study of mine closing,” .Rev Financ Stud, 15, (1),:pp.35–64.
[37]     McCarthy, J. and Monkhouse P., 2003. “To open or not to open - or what to do with a closed copper mine,” .J Appl Corporate Finance, 15,:pp.56–66.
[38]     Samis, M., Davis, G., Laughton, D. and Poulin R., 2006. “Valuing Real, uncertain asset cash flows when there are no options: a options approach,” .Resour Policy, 30, (4),:pp.285–298.
[39]     Sabour, S. A. and Wood G., 2009. “Modelling financial risk in open pit Decision-making, mine projects: implications for strategic” .J South Afr Inst Min Metall, 109,:pp.169–175.
[40]     Sabour SA, Poulins R., 2010. “Mine expansion decisions under uncertainty” .International Journal of Mining, Reclamation and Environment, 24:pp.340–349.
[41]     Dehghani, H.,& Ataee-pour M., 2012. “‘Determination of the effect of operating cost uncertainty on mining project evaluation. Resources Policy’” .Resources Policy, 37(1),:pp.109-117.
[42]     Amini, M., Alijani, F., and Mozaffari  z., 2015. “Economic evaluation of mining projects under conditions of uncertainty for prices and operating costs” .International Journal of Innovation and Applied Studies, Vol.10:pp.881–890.
[43]     Evatt, G.W.; Soltan, M.O.; Johnson PV., 2012. “Mineral reserves under price uncertainty.” .Resour Policy, 37:pp.340–345.
[44]     Akbari, A.D., Osanloo, M., Shirazi MA., 2016. “Minable reserve estimation while determining ultimate pit limits (UPL) under price uncertainty by real option approach (ROA)” .Archives of Mining Sciences, 54(2):pp.321–339.
[45]     Sabour, S. A., Dimitrakopoulos R and KM., 2008. “Mine design selection under uncertainty,” .Trans IMM A: Min Technol, 117:pp.53–64.
[46]     Akbari, A. D., Osanloo, M., and Shirazi MA., 2008. “Ultimate pit limit (UPL) Uncertainty., determination through minimizing risk costs associated with price” .Gospodarka Surowcami Mineralnymi, 24:pp.157–170.
[47]     Meagher C, Sabour S a A, Dimitrakopoulos R., 2009. “Pushback Design of Open Pit Mines Under Geological and Market Uncertainties” .Orebody Modelling and Strategic Mine Planning, 17:pp.16–18.
[48]     Abdel Sabour, A., Dimitrakopoulos R., 2011. “Incorporating geological and Mine, market uncertainties and operational flexibility into open-pit mine design” .Journal of Mining Science, 47(2):pp.:191–201.
[49]     Asad MWA, Dimitrakopoulos R., 2013. “Implementing a parametric maximum flow algorithm for optimal open pit mine design under uncertain supply and demand” .Journal of the Operational Research Society, 64:pp.185–197.
[50]     Deutsch M, González E, Williams M., 2015. “Using simulation to quantify uncertainty in ultimate pit limits and inform infrastructure placement” .2015 SME Annu. Conf. Expo C. 117th Natl. West. Min. Conf. - Min. Navig. Glob. Waters
[51]     Chatterjee S, Sethi MR, Asad MWA., 2016. “Production phase and ultimate pit limit design under commodity price uncertainty” .European Journal of Operational Research, 248:pp.658–667.
[52]     Baek J, Choi Y, Park H., 2016. “Uncertainty Representation Method for Open Pit Optimization Results Due to Variation in Mineral Prices” .Minerals, 6:pp.1–17.
[53]     Charnes A, Cooper WW., 1963. “Deterministic Equivalents for Optimizing and Satisficing under Chance Constraints” .Operations Research, 11:pp.18–39.