[1] Rezaiee-Pajand, M., Sharifian, M. and Sharifian, M. (2011). Accurate and approximate integrations of Drucker–Prager plasticity with linear isotropic and kinematic hardening. European Journal of Mechanics - A/Solids, Volume 30(3): 345-361.
https://doi.org/10.1016/j.euromechsol.2010.12.001.
[2] Borja, Ronaldo I. (2013). Plasticity. Springer Berlin Heidelberg. doi: 10.1007/978-3- 642-38547-6 (cit. on pp. 91, 92).
[3] Rezaiee-Pajand, M. and Nasirai, C. (2008). On the integration schemes for Drucker-Prager’s elastoplastic models based on exponential maps. Int. J. Numer. Meth. Eng. 74: 799-826.
[4] de Souza Neto E, Peri D, and Owen D. (2008). Computational methods for plasticity. John Wiley Sons Ltd.
[5] Loret, B. and Prevost, J.H. (1986). Accurate numerical solutions for Drucker–Prager elastic–plastic models Comput. Meth. Appl. Mech. Eng.
[6] Genna, F. and Pandolfi, A. (1994). Accurate numerical integration of Drucker-Prager’s constitutive equations. Meccanica 29: 239-260.
[7] Kobayashi, M., Mukai, M., Takahashi, H., Ohno, N., Kawakami, T. and Ishikawa, T. (2003). Implicit integration and consistent tangent modulus of a time-dependent nonunified constitutive model. Int. J. Numer. Meth. Eng. 58: 1523-1543.
[8] Kan, Q.H., Kang, G.Z. and Zhang, J. (2007). A unified visco-plastic constitutive model for uniaxial time-dependent ratchetting and its finite element implementation. Theor. Appl. Fract. Mech. 47: 133-144.
[9] Coombs, W.M., Crouch, R.S. and Augarde, C.E. (2010). Reuleaux plasticity: analytical backward Euler stress integration and consistent tangent. Comput. Methods Appl. Mech. Eng. 199: 1733-1743.
[10] Liu, C.-S. (2004). Internal symmetry groups for the DruckerePrager material model of plasticity and numerical integrating methods. Int. J. Solids Struct. 41: 3771-3791.
[11] Cecílio D.L., Devloo P.R., Gomes S.M., dos Santos E.R. and Shauer N. (2015). An improved numerical integration algorithm for elastoplastic constitutive equations. Comput Geotech, 64: 1–9.
[12] Sanei, M., Devloo, P.R.B., Forti, T.L.D., Durán, O. and Santos, E.S.R. (2021a). An innovative scheme to make an initial guess for iterative optimization methods to calibrate material parameters of strain-hardening elastoplastic models. Rock Mech Rock Eng 55(1): 399–421. https:// doi. org/ 10. 1007/ s00603- 021- 02665-y.
[13] Sanei, M., Devloo, P.R.B., Forti, T.L.D., Durán, O. and Santos, E.S.R. (2019). On data adjustment of an elastoplastic constitutive model using optimization methods. ENAHPE 2019 – Encontro Nacional de Construção de Poços de Petróleo e Gás Serra Negra – SP, 19 a 22 de Agosto de 2019.
[14] Sanei, M., Durán, O., Devloo, P.R.B. and Santos, E.S.R. (2021b). Analysis of pore collapse and shear-enhanced compaction in hydrocarbon reservoirs using coupled poro-elastoplasticity and permeability. Arab J Geosci. https:// doi. org/ 10. 1007/ s12517- 021- 06754-8.
[15] Sanei, M., Durán, O., Devloo, P.R.B., Santos, E.S.R. (2022). Evaluation of the impact of strain-dependent permeability on reservoir productivity using iterative coupled reservoir geomechanical modeling. Geomech Geophy Geo Energy Geo Res. https:// doi. org/ 10. 1007/ s40948- 022- 00344-y.
[16] Sanei, M., Duran, O., Devloo, P.R.B. (2019). Numerical modeling of pore collapse in hydrocarbon reservoirs using a cap plasticity constitutive model. In Proceedings of the 14th International Congress on Rock Mechanics and Rock Engineering, Brazil. ISRM-14CONGRESS-2019-377.
[17] Durán, O., Sanei, M., Devloo, P.R.B., Santos, E.S.R. (2019). An iterative scheme for poroelasto-plastic to analyze a wellbore during drilling. ENAHPE 2019 – Encontro Nacional de Construção de Poços de Petróleo e Gás Serra Negra – SP, 19 a 22 de Agosto de 2019.
[18] Sanei, M., Duran, O., Devloo, P.R.B. (2017). Finite element modeling of a nonlinear poromechanic deformation in porous media. In Proceedings of the XXXVIII Iberian Latin American Congress on Computational Methods in Engineering. ABMEC Brazilian Association of Computational Methods in Engineering. https:// doi. org/ 10. 20906/ cps/ cilamce 2017- 0418.
[19] Duran, O., Sanei, M., Devloo, P.R.B., Santos, E.S.R. (2020). An enhanced sequential fully implicit scheme for reservoir geomechanics. Comput Geosci 24(4): 1557–1587. https:// doi. org/ 10. 1007/ s10596- 020- 09965-2.
[20] Sanei, M., Duran, O., Devloo, P.R.B., Santos, E.S.R. (2020). An innovative procedure to improve integration algorithm for modified cam-clay plasticity model. Comput Geotech 124: 103604.
https://doi.org/10.1016/j.compgeo.2020.103604.
[21] Heydari, M., Aghakhani Emamqeysi, M.R., Sanei, M. (2022) Finite element analysis of wellbore stability and optimum drilling direction and applying NYZA method for a safe mud weight window. Journal of Analytical and Numerical Methods in Mining Engineering. 10.22034/ANM.2022.2582.
[22] Rudnicki, John W. (1986). Fluid mass sources and point forces in linear elastic diffusive solids. In: Mechanics of Materials 5(4): 383–393. doi: 10.1016/0167- 6636(86)90042-6.
[23] Kossa, A. (2011). Exact stress integration schemes for elastoplasticity Ph.D. thesis Budapest University of Technology and Economics.
[24] Davis, R and Selvadurai, A. (2002). Plasticity and geomechanics. Cambridge University Press.
[25] Sanei, M., Faramarzi, L., Fahimifar, A., Goli, S., Mehinrad, A., Rahmati, A. (2015). Shear strength of discontinuities in sedimentary rock masses based on direct shear tests. Int. J. Rock Mech. Min. Sci., 75:119-131.
https://doi.org/10.1016/j.jksus.2023.102846.
[26] Sanei, M. (2023). Development of Mohr-Coulomb criterion elastoplastic integration algorithm scheme for rock. Journal of Petroleum Geomechanics. 10.22107/JPG.2023.413537.1209.
[27] Drucker, D.C. and Prager, W. (1952). Soil Mechanics and Plasticity Analysis of Limit Design. Quart. J. Appl. Math., 10: 157–162.
[28] Chen, W-F. and Mizuno, E. (1990). Nonlinear Analysis in Soil Mechanics. Theory and Implementation. New York: Elsevier.
[29] H Yousefian, H Soltanian, MF Marji, A Abdollahipour, Y Pourmazaheri. (2018). Numerical simulation of a wellbore stability in an Iranian oilfield utilizing core data. Journal of Petroleum Science and Engineering 168, 577-592.
[30] A Abdollahipour, MF Marji. (2020). A thermo-hydromechanical displacement discontinuity method to model fractures in high-pressure, high-temperature environments. Renewable Energy 153, 1488-1503.
[31] Zhang, C.L. (2016). The stress–strain–permeability behaviour of clay rock during damage and recompaction. In: Journal of Rock Mechanics and Geotechnical Engineering 8(1): 16–26.