تفکیک آنومالی‌های ژئوشیمیایی مرتبط با کانی‌سازی گرمابی مس با استفاده از تحلیل فاکتوری مرحله‌ای در برگه زمین‌شناسی فیض‌آباد

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی معدن، دانشکده فنی و مهندسی، دانشگاه ملایر، ملایر، ایران

2 گروه مهندسی معدن، پردیس مهندسی، دانشگاه بیرجند، بیرجند، ایران

چکیده

ژئوشیمی رسوب آبراهه‌ای یکی از روش‌های پرکاربرد برای اکتشاف کانی‌سازی در مقیاس وسیع است. پردازش دقیق داده‌های رسوبات آبراهه‌ای بسیار حائز اهمیت است زیرا اگر به‌طور دقیق پردازش نشود می‌تواند باعث از دست رفتن برخی از مناطق امیدبخش شود. در این پژوهش به‌منظور تفکیک دقیق‌تر آنومالی‌های ژئوشیمیایی مرتبط با تیپ‌های کانی‌سازی مس با منشأ گرمابی (مس - طلای پورفیری، رگه‌ای و IOCG) در بخش شمالی برگه یک‌صد هزار فیض‌آباد از روش تحلیل فاکتوری مرحله‌ای استفاده شد. در این روش علاوه بر حذف عناصر بی‌اثر در پردازش‌های چند متغیره، عناصر غیر مرتبط با منشأ گرمابی و همچنین عناصری که حداقل مشارکت گروهی را با سایر عناصر نشان می‌دهند نیز کنار گذاشته ‌‌می‌‌شود تا فاکتورهای بدون نوفه و اصطلاحاً فاکتور‌‌های تمیز به دست آید. نتایج به‌دست‌آمده نشان داد که فاکتور‌های 1 و 2 در مرحله چهارم از تحلیل فاکتوری مرحله‌ای می‌توانند فاکتور‌های مناسبی برای اکتشاف ذخایر مس در این منطقه باشند. جهت اعتبارسنجی مدل‌های ژئوشیمیایی، با استفاده از نمودار نرخ پیش‌بینی-مساحت، نتایج به‌دست‌آمده از روش تحلیل فاکتوری مرحله‌ای و روش تحلیل فاکتوری معمولی مقایسه شد. مقایسه فوق نشان داد که فاکتور دوم روش تحلیل فاکتوری مرحله‌ای در 22 درصد از مساحت منطقه، 78 درصد از کل اندیس‌های مس گرمابی را آشکار‌سازی می‌کند درحالی‌که فاکتور دوم روش معمولی، در 25 درصد مساحت منطقه، 75 درصد از اندیس‌های معدنی شناخته‌شده را در بر می‌گیرد؛ بنابراین در روش تحلیل فاکتوری مرحله‌ای، آنومالی‌هایی با مساحت کمتر، دقیق‌تر و قابل‌اعتمادتر آشکارسازی شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Separation of geochemical anomalies related to hydrothermal copper mineralization using staged factor analysis in Feizabad geological map

نویسندگان [English]

  • Mobin Saremi 1
  • Mahyar Yousefi 1
  • Saeed Yousefi 2
1 Dept. of Mining Engineering, Faculty of Engineering, Malayer University, Malayer, Iran
2 Dept. of Mining, Faculty of Engineering, University of Birjand, Birjand, Iran
چکیده [English]

Summary
Stream sediment geochemistry is one of the widely used methods for mineral exploration in the preliminary exploration stages. The accurate processing of the stream sediment geochemical data is of critical undertaking. That is due to the possibility of missing some exploration targets in cases where proper interpretation techniques are not applied. In this research, to more accurately separate the geochemical anomalies of hydrothermal-related copper mineralization, e.g., copper-gold porphyry, vein, and IOCG types in the northern part of 1:100000 Feizabad sheet, the staged factor analysis method was used. In this method, in addition to eliminating possible interfering elements in calculations, the elements unrelated to the hydrothermal copper mineralization type were also excluded to obtain non-interfering factors or so-called clean factors. The obtained results showed that factors 1 and 2 in the fourth stage of staged factor analysis can be significant factors for the exploration of copper deposits in this region. To validate the results, by using the area-prediction diagram, the staged factor analysis results were compared with the conventional factor analysis method. The comparison of the two methods showed that the staged factor analysis method in factor 1 in 22% of the area of the region reveals 78% of hydrothermal copper occurrences, while factor 1 of the conventional method, in 25% of the area, reveals 75% of the known copper occurrences. Therefore, in the staged factor analysis method, the anomalies with a smaller area and more reliability in predicting of mineral occurrences, have been detected.
 
Introduction
One of the effective methods for identifying mineral deposits and promising areas in the early stages of exploration is the geochemistry of stream sediments. Researchers have used many methods to identify promising areas. In this research, to separate the geochemical anomalies related to the types of copper mineralization with hydrothermal origin such as copper-gold porphyry, vein, and IOCG deposit, the staged factor analysis method was used.
 
Methodology and Approaches
staged factor analysis consists of two basic parts. In the first part, after performing a factor analysis step, if there are elements in the output that do not have high participation in any factor according to the threshold, those elements are removed from the data set. This continues until there are no more elements that have a low contribution to the factors. Because the effect of geochemical noise has been reduced in these factors, the output factors of this stage are called clean factors. As a result, these factors have good reliability. In the second part, according to the desired type of mineralization, the elements in factors that are not directly related to the deposit type are removed and the factor analysis is repeated. Similar to the previous section, if an element with low participation in the factors is observed, it is removed from the data set. In this research, 657 samples of stream sediments in the north of Feizabad have been used to conduct geochemical studies. To implement the method, first, the data distribution of collected stream sediment data was closer to the normal, then by performing staged factor analysis and considering the threshold limit of 0.5, clean factors were extracted.
 
Results and Conclusions
To verify the performance of staged factor analysis over the conventional factor analysis, the area-prediction diagrams were used for the prediction of 13 known copper occurrences with hydrothermal origin in the region as the definite anomaly area (Fig. 1 and 2). According to results, in the maps produced using staged factor analysis, 78% of copper occurrences were predicted in about 22% of the studied area in factor 2 of the fourth stage (Fig 1-A). Also, 60% of copper occurrences were detected in about 40% of the map in factor 1 of the fourth stage (Fig. 1-B). While, in the case of the maps produced using conventional factor analysis, 75% of copper occurrences were placed in an area of about 25% of the studied area, in factor 2 (Fig. 2-A), and 52% of copper occurrences were associated in 48% of the study area, in factor 1 (Fig. 2-B). Therefore, the evaluation of the generated maps shows that the staged factor analysis has a higher prediction rate than the conventional factor analysis method, and provides more reliable results because by removing geochemical noises and using multi-element geochemical effects, the detection of anomaly areas is done more accurately.

کلیدواژه‌ها [English]

  • Staged factor analysis
  • Hydrothermal mineralization
  • Stream sediments
  • Geochemistry
  • Feyzabad
[1]                 Darehshiri, A., Panji, M., & Mokhtari, A. R. (2015). Identifying geochemical anomalies associated with Cu mineralization in stream sediment samples in Gharachaman area, northwest of Iran. Journal of African Earth Sciences, 110, 92-99.
[2]                  Momeni, S., Shahrokhi, S. V., Afzal, P., Sadeghi, B., Farhadinejad, T., & Nikzad, M. R. (2016). Delineation of the Cr mineralization based on the stream sediment data utilizing fractal modeling and factor analysis in the Khoy 1: 100,000 sheet, NW Iran. Bulletin of the Mineral Research and Exploration, 152(152), 143-151.
[3]                  Afzal, P., Farhadi, S., Boveiri Konari, M., Shamseddin Meigooni, M., & Daneshvar Saein, L. (2022). Geochemical anomaly detection in the Irankuh District using Hybrid Machine learning technique and fractal modeling. Geopersia, 12(1), 191-199.
[4]                 Farhadi, S., Afzal, P., Boveiri Konari, M., Daneshvar Saein, L., & Sadeghi, B. (2022). Combination of Machine Learning Algorithms with Concentration-Area Fractal Method for Soil Geochemical Anomaly Detection in Sediment-Hosted Irankuh Pb-Zn Deposit, Central Iran. Minerals, 12(6), 689.
[5]                 Torshizian, H., Afzal, P., Rahbar, K., Yasrebi, A. B., Wetherelt, A., & Fyzollahhi, N. (2021). Application of modified wavelet and fractal modeling for detection of geochemical anomaly. Geochemistry, 81(4), 125800.
[6]                 Ghannadpour, S. S., & Hezarkhani, A. (2022). A new method for determining geochemical anomalies: UN and UA fractal models. International Journal of Mining and Geo-Engineering, 56(2), 181-190.
[7]                 Zadmehr, F., & Shahrokhi, S. V. (2019). Separation of geochemical anomalies by concentration-area and concentration-number methods in the Saqez 1: 100,000 sheet, Kurdistan. Iranian Journal of Earth Sciences, 11(3), 196-204.
[8]                 Ziaii, M., Pouyan, A. A., & Ziaei, M. (2009). Neuro-fuzzy modelling in mining geochemistry: identification of geochemical anomalies. Journal of Geochemical Exploration, 100(1), 25-36.
[9]                 Yousefi, S.; Doulati Ardejani, F.; Ziaii, Karamoozian, M.; 2015; “The speciation of cobalt and nickel at mine waste dump using improved correlation analysis: a case study of Sarcheshmeh copper mine”.Environment, development and sustainability, 17(5),pp.1065-1084.
[10]             Shahrestani, S., Mokhtari, A. R., & Alipour-Asll, M. (2019). Assessment of Estimated Bedrock and Stream Sediment Geochemical Backgrounds in Catchment Basin Analysis. Natural Resources Research, 28, 1071-1087.
[11]             Wu, R., Chen, J., Zhao, J., Chen, J., & Chen, S. (2020). Identifying geochemical anomalies associated with gold mineralization using factor analysis and spectrum–area multifractal model in Laowan District, Qinling-Dabie Metallogenic Belt, Central China. Minerals, 10(3), 229.
[12]              Satyanarayanan, M., Eswaramoorthi, S., Subramanian, S., & Periakali, P. (2017). Factor analysis of rock, soil and water geochemical data from Salem magnesite mines and surrounding area, Salem, southern India. Applied Water Science, 7, 2607-2616.
[13]             Valsangkar, A. B., Karisiddaiah, S. M., & Ambre, N. V. (1992). Geochemistry, factor analysis and clay mineral distribution of the sediments and relationship with the associated ferromanganese nodules from the SW Carlsberg Ridge.
[14]             Uusikorpi, J. (2020). Factor analysis of a large geochemical exploration data set:    example from Kalba gold belt, eastern Kazakhstan.
[15]             Reimann, C., Filzmoser, P., & Garrett, R.G. (2002). Factor analysis applied to regional geochemical data: problems and possibilities. Applied Geochemistry, 17, 185-206.
[16]             Sun, X., Deng, J., Gong, Q., Wang, Q., Yang, L., & Zhao, Z. (2009). Kohonen neural network and factor analysis based approach to geochemical data pattern recognition. Journal of Geochemical Exploration, 103(1), 6-16.
[17]             Van Helvoort, P. J., Filzmoser, P., & van Gaans, P. F. (2005). Sequential factor analysis as a new approach to multivariate analysis of heterogeneous geochemical datasets: an application to a bulk chemical characterization of fluvial deposits (Rhine–Meuse delta, The Netherlands). Applied geochemistry, 20(12), 2233-2251.
[18]              Sun, X., Deng, J., Gong, Q., Wang, Q., Yang, L., & Zhao, Z. (2009). Kohonen neural network and factor analysis based approach to geochemical data pattern recognition. Journal of Geochemical Exploration103(1), 6-16.
[19]             Ayoobi, I., Shamsipour Dehkordi, R., & Shiva, M. (2013). Anomaly recognition in stream sediment geochemical exploration using factor analysis in Mesgaran area of Birjand, eastern Iran. Journal of Economic Geology5(1), 105-115 (In Persian).
[20]             Tripathi, V. S. (1979). Factor analysis in geochemical exploration. Journl of Geochemical Exploration, 11(3), 263-275.
[21]               Helba, H. A., El-Makky, A. M., & Khalil, K. I. (2021). Application of the CN fractal model, factor analysis and geochemical mineralization probability index (GMPI) for delineating geochemical anomalies related to a Mn-Fe deposit and associated Cu mineralization in west-central Sinai, Egypt. Geochemistry: Exploration, Environment, Analysis, 21(3).
[22]              Yousefi, M., Kamkar-Rouhani, A., & Carranza, E. J. M. (2014). Application of staged factor analysis and logistic function to create a fuzzy stream sediment geochemical evidence layer for mineral prospectivity mapping.
[23]               M. Daviran, R. Ghavami, A. Maghsoudi, and R. Ghezelbash, Identification of Hydrothermal alteration zones using ASTER data in northern parts of Doruneh fault within the Feizabad sheet. 2017 (In Persian).
[24]              Behroozi A (1987) Geological map of Iran 1: 100,000 series, Feizabad.Geological Survey of Iran, Tehran (In Persian(.
[25]               Yousefi, M., Kamkar-Rouhani, A., & Alipoor, M. (2014). Increasing the Exploration Success and Intensify of Stream Sediment Geochemical Halos Using Recognizing and Omitting the Non-Predictive Factors, Case Studies: Fluorite and Copper Mineralization. Scientific Quarterly Journal of Geosciences, 24(93), 85-92. doi: 10.22071/gsj.2014.43531 (In Persian).
[26]              Hassani Pak, A., A., (2016). Geochemical exploration, 9th edition, University of tehran press, (In Persian.(
[27]             Cox, D.R., Snell, E.J., (1989). Analysis of Binary Data, 2nd ed. Chapman and Hall, London
[28]              Yousefi, M., Kamkar-Rouhani, A., & Carranza, E. J. M. (2012). Geochemical mineralization probability index (GMPI): a new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping. Journal of Geochemical Exploration, 115, 24-35.
[29]              Yousefi, M., & Carranza, E. J. M. (2015). Prediction–area (P–A) plot and C–A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling. Computers & Geosciences, 79, 69-81.
[30]            Brown, W. M., Gedeon, T. D., & Groves, D. I. (2003). Use of noise to augment training data: a neural network method of mineral–potential mapping in regions of limited known deposit examples. Natural Resources Research, 12, 141-152.