تأثیر پارامترهای هندسی الگوی انفجار بر خرج ویژه بهینه به کمک الگوریتم‌های خفاش و جستجوی کلاغ، مطالعه موردی: معدن سنگ‌آهن سادات سیریز زرند

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی معدن، مجتمع آموزش عالی زرند، کرمان، ایران

چکیده

چال زنی و انفجار، ازجمله مهم‌ترین مراحل استخراج در معادن روباز هستند که بهینه­سازی آنها می­تواند در کاهش حجم حفاری، میزان مصرف مواد منفجره و درنهایت هزینه­های استخراج معادن سطحی مؤثر باشد. در این تحقیق، بر اساس مطالعات میدانی، تعداد 11 پارامتر حاصل از 130 مجموعه انفجار عملی در معدن سنگ‌آهن سادات سیریز زرند برداشت‌شده و ثبت گردید که 60 سری در ماده معدنی و 70 سری آن در باطله بودند. با توجه به ضریب همبستگی پایین بین داده­های باطله، فقط محاسبات مربوط به ماده معدنی در نظر گرفته شد. خرج ویژه این معدن با شش تابع مختلف ریاضی توسط نرم‌افزار spss مدل­سازی گردید و از بین آنها مدل تابع چندجمله­ای با ضرایب غیر صحیح برای پیش‌بینی خرج ویژه انتخاب شد. بهینه­سازی خرج ویژه توسط دو الگوریتم خفاش و جستجوی کلاغ انجام گردید. با توجه به الگوهای پیشنهادی، میزان خرج ویژه بهینه با الگوریتم‌های خفاش و جستجوی کلاغ به ترتیب 66/0 و 703/0 کیلوگرم بر مترمکعب به دست آمد و معلوم شد مقدار بهینه‌شده با الگوریتم خفاش، نتیجه مناسب‌تری را پیشنهاد می­دهد. با آنالیز حساسیت، پارامترهای حساس و مؤثر در این معدن برای خرج ویژه مشخص شدند. این آنالیز نشان داد، همه پارامترهای هندسی ورودی به‌کاررفته در مدل­سازی نسبت به خرج ویژه از حساسیت قوی برخوردار هستند و از بین آنها ضریب سفتی، بیشترین و خرج کل مصرفی، کم‌ترین حساسیت را دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of explosion parameters on the amount of Powder factor and its optimization using the bat algorithm and the crow search algorithm with a view on Zarand Sadat Siriz iron ore mine

نویسندگان [English]

  • Roghayeh Heydari
  • Seyed Mehdi Mousavi Nasab
Dept .of Mining Engineering, Zarand Higher Education Complex, Kerman, Iran
چکیده [English]

Choosing the right drilling and blasting methods is very important to improve mine productivity and increase profits, while increasing the safety of workers and the environment. One of the main goals in Blasting is to estimate the optimal amount of specific cost, which is described as the specific cost required for optimizing rock crushing, air blast, ground shaking, and rock throwing. In this Paper, to further improve the effect of blasting and increase the efficiency of mine production, we optimized the plan by considering the implementation of the blasting plan with respect to the drilling intervals, and a numerical simulation model was created to provide technical guidance for the optimization plan. In this Paper, data collection and analysis were done by the software and it was determined that with R^2=0.969, VAF=9.825, the lowest error is RMSE=0.031 and MAPE=0.323 with unit m^3kg/ . The polynomial function model with incorrect coefficients has a more satisfactory performance and this function model was subjected to sensitivity analysis using the cosine field method. The evaluation and analysis in this way also showed that the selected function model has a more accurate calculation of the specific cost. This proposed function was called in the bat algorithm and the crow search algorithm in MATLAB software, and the optimization operation was performed by the algorithms. In this Paper, the number of 11 data from 31 blasting series that were actually carried out in Sadat iron ore mine of Zarand series was collected. The special cost of this mine was modeled with 6 functions by spss software, and among them, the polynomial function model with incorrect coefficients was chosen to predict the special cost. The special cost optimization operation was performed by two bat algorithms and the crow search algorithm, and the special cost optimized by the algorithms was compared. By sensitivity analysis, the sensitive and effective parameters taken in this mine were identified for special spending. This analysis showed that all the input parameters used in this modeling have a strong sensitivity to the specific cost, and among them, the ratio of the height of the step to the thickness of the bar rock has the highest sensitivity and the total consumption cost has the lowest sensitivity.

کلیدواژه‌ها [English]

  • Powder factor
  • bat algorithm
  • crow search algorithm
  • sensitivity analysis
  • modeling
  • Sadat Siriz iron ore mine
[1]                 Konya CJ, Walter EJ. (1991). Rock blasting and overbreak control. US: Federal Highway Administration, No. FHWA-HI-92-001.
[2]                 S. Bhandari. (1997). Engineering rock blasting operations. Rotterdam, Brookfield.
[3]                 J.P. Latham, P. Lu. (1999).  Development of an assessment system for the blastability of rock masses. Int J Rock Mech Min Sci, 36, pp. 41-55.
[4]                 Azimi, Y., Osanloo, M., Aakbarpour-Shirazi, M., Aghajani Bazzazi, A. (2010). Prediction of the blastability designation of rock masses using fuzzy sets. Int J Rock Mech Min Sci, 47 (7), pp. 1126-1140.
[5]                 P.H.S.W. Kulatilake, T. Hudaverdi, Q. Wu. (2012). New prediction models for mean particle size in rock blast fragmentation. Geotech Geol Eng, 30, pp. 665-684.
[6]                 Akbari, Majid., Lashkaripour, Gholamreza., Yarahamdi Bafghi, Alireza., Ghafoori, Mohammad. (2015). Blastability evaluation for rock mass fragmentation in Iran central iron ore mines. International Journal of Mining Science and Technology Volume 25, Issue 1, January, Pages 59-66.
[8]                 Liu, B., Tian, K., Huang, B., Zhang, X., Bian, Z., Mao, Z., et al. (2021). Pollution Characteristics and Risk Assessment of Potential Toxic Elements in a Tin-Polymetallic Mine Area Southwest China: Environmental Implications by Multi-Medium Analysis. Bull. Environ. Contam. Toxicol. 1–11. doi:10.1007/S00128-021-03314-4.
[9]                 Wang, W., Wei, Y., Guo, M., Li, Y., and Wang, G. D. (2021). Coupling Technology of Deep-Hole Presplitting Blasting and Hydraulic Fracturing Enhance Permeability Technology in Low-Permeability and Gas Outburst Coal Seam: A Case Study in the No. 8 mine of Pingdingshan, China. Adv. Civil Eng. 1–12. doi:10.1155/5569678.
[10]             Aldas, G. G. U., and Ecevitoglu, B. (2008). Waveform Analysis in Mitigation of Blast-Induced Vibrations. J. Appl. Geophys. 66 (1), 25–30. doi:10.1016/j.jappgeo.
[11]             Li, B., Wang, E., Li, Z., Niu, Y., Li, N., and Li, X. (2021). Discrimination of Different Blasting and Mine Microseismic Waveforms Using FFT, SPWVD and Multifractal Method. Environ. Earth Sci. 80 (1), 1–16. doi:10.1007/S12665-020-09330-7.
[12]             Li, X., Geng, J., Li, Q., Tian, W., and Zhou, T. (2021). Behaviors and Overlying Strata Failure Law for Underground Filling of a Gently Inclined Medium-Thick Phosphate Deposit. Adv. Civil Eng. 1–17. doi:10.1155/3275525.
[13]             Moghdisi, Seyedjavad., Yazdi, Javad., Namdar Mohammadi, Tahereh. (2016). Mineralogy and geochemistry of Siriz iron deposit, north west of Zarand, Kerman province. Geoscience Journal, Volume 27, Number 106. (In Persian).
[14]             Report of the Technical Office Sadat Siriz iron ore mine of Zarand, Zarand, Iran., 2017.
[15]             https://sisoo.ir.
[16]              https://gsi.ir/kerman/fa.
[17]             A. Karamia, S. Afiuni-Zadehb. (2013). Sizing of rock fragmentation modeling due to bench blasting using adaptive neuro-fuzzy inference system (ANFIS). Int J Min Sci Technol, 23 (6), pp. 809-813.
[18]             ISRM (International Society for Rock Mechanics). (1978). Commission on standardization of laboratory and field tests, Suggested methods for the quantitative description of discontinuities in rock masses. Int J Rock Mech Min Sci Geomech Abstr, 15 (6), pp. 319-368.
[19]             Alvarez Grima, M., Babuska, R. (1999). Fuzzy model for the prediction of unconfined compressive Strength of rock samples. Rock MechRock Eng, 36: 339-349.
[20]             Yilmaz, I., Yuksek, A.G. (2008). An example of artificial neural network application for indirect estimation of rock parameters. Rock MechRock Eng, 41: 781-795.
[21]             Saemi, M., Gilani, S.O. (2006). Determining of Optimal Powder Factor in Tunnel Blasting Using Neural Network Systems. Scientific Research Journal of Mining Engineering, Volume 1, Number 1, (In Persian).
[22]             Semprit, Chatterjee, Ali, S. Hadi, Bertram, Price. (2010). Regression analysis with examples. (translated by Hossein Ali Niromand), Mashhad: Ferdowsi University Press, (In Persian).
[23]             Mirjalili, S.A., Mirjalili, S.M., Yang, X.S. (2014). Binary bat algorithm, Neural computing and applications.25(3-4): 663-681.
[24]             Yechuang, Wang., Penghong, Wang., Jiangjiang, Zhang .,Zhihua, Cui., Xingjuan, Cai., Wensheng, Zhang., Jinjun, Chen. (2019). A Novel Bat Algorithm with Multiple Strategies Coupling for Numerical Optimization. International Journal of Scientific World (IJSW).
[25]             Abdelazim G, Hussien., Mohamed, Amin., Mingjing, Wang., Guoxi, Liang., Ahmed, Alsanad., ABDU, GUMAEI., HUILING, CHEN. (2020). Crow Search Algorithm: Theory, Recent Advances, and Applications. IEEE Access ( Volume: 8).