شناسایی کانی زایی طلا در منطقه مینرالی قره چر با استفاده از روش تکینگی چند عنصری

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی معدن، دانشکدگان فنی، دانشگاه تهران، تهران، ایران

چکیده

تکینگی ویژگی انواع فرآیندهای طبیعی غیرخطی مانند فرآیندهای هیدروترمال در پوسته زمین است که باعث ایجاد ذخایر دارای غلظت‌های بالایی از فلزات می­شود. نتیجه نهایی این فرآیندها بروز ویژگی­های فرکتالی یا چند فرکتالی است که روش­های متعددی برای شناسایی این ویژگی‌ها وجود دارد. روش نقشه توزیع تکینگی ازجمله آنالیزهای چند فرکتال بوده که بر اساس شاخص تکینگی و به‌عنوان ابزاری برای جدایش آنومالی از زمینه یا جدایش آنومالی­های محلی از ناحیه­ای توسعه یافته است. در این پژوهش از روش نقشه توزیع تکینگی چند عنصری برای تعیین آنومالی­های ژئوشیمیایی، ویژگی­های ساختاری و تعین نحوه ارتباط بین عناصر در منطقه مینرالی قره چر واقع در 42 کیلومتری جنوب باختر شهر سقز، استان کردستان، استفاده شده است. بانک داده شامل تعداد 1104 نمونه لیتوژئوشیمیایی با 8 عنصر آنالیز شده شامل Au, As, Ag, Cu, Sn, Mo, Zn, Pb بود که ماهیت ترکیبی و همبستگی کاذب متعاقب داده­ها در سیستم بسته باعث شد تا از تحلیل مؤلفه‌های اصلی بر روی داده­های تحت تبدیل لگاریتمی ایزومتریک استفاده شود. با توجه به نتایج حاصل از آن ارتباط بین عناصر As و Cu بر روی مؤلفه اصلی اول و مؤلفه اصلی دوم نشان‌دهنده عملکرد مستقل طلا در این منطقه است. استفاده از روش نقشه توزیع تکینگی بر روی این نتایج، مناطق امیدبخش و پر پتانسیلی را برای عملیات اکتشافی معرفی کرده که با توجه به تطابق این مناطق با آلتراسیون­های فیلیک، اکسیدهای آهن، کانه­های سولفیدی و سلول­های پر عیار طلا از اعتبار بالایی برای کانه­زایی برخوردارند. درنهایت با توجه به نتایج حاصل از نقشه‌های توزیع تکینگی می‌توان بیان نمود که این منطقه دارای دو تیپ متفاوت کانه زایی حرارت متوسط (مزوترمال) تا حرارت بالا در نیمه جنوبی و نوع حرارت پایین (اپی ترمال) تا مزوترمال در نیمه شمالی است؛ اما به توجه به حضور کانسارهای معروف طلای تیپ مزوترمال (کوهزایی) کرویان و قلقله واقع در نزدیکی منطقه قره چر، می‌توان عنوان نمود که احتمال حضور کانی سازی طلای تیپ کوهزایی بیشتر است، به‌طوری‌که می‌توان از معیارهای اکتشافی این تیپ کانسار برای اکتشافات بعدی در این منطقه استفاده نمود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Identification of gold mineralization in the Qara Cher area using multi-element singularity mapping method

نویسندگان [English]

  • Pouya Asadi Harouni
  • Omid Asghari
Dept. of Mining Engineering, Technical College, University of Tehran, Tehran, Iran
چکیده [English]

Singularity is the characteristic of various non-linear phenomena, such as hydrothermal processes in the Earth's crust, which produce deposits with high metal concentrations. The final result of these processes is the appearance of fractal or multi-fractal features, and several methods exist to identify these features. The singularity distribution mapping method is one of the multi-fractal analyses developed based on the singularity index and as a tool for separating anomalies from the background or for separating local anomalies in a region. In this study, the multi-variable singularity mapping method was used to determine geochemical anomalies to establish the relationship between various elements in the Qara Cher exploration area, located 42 km southwest of the city of Saqez in Kurdistan province. The database contains 1104 litho-geochemical samples with 10 analyzed elements, including Au, As, Ag, Cu, Sb, Sn, Bi, Mo, Zn, and Pb. Due to the compositional nature of the variables and subsequent false correlations in the closed system, principal components analysis (PCA) was applied to the data under isometric log ratio (ilr) transformation. The relationship between As and Cu on the first and second principal components shows the independent function of gold in the study area. The application of the singularity mapping method has highlighted some promising and potential areas for future explorations. These areas could be important for mineralization due to the presence of phyllic alteration, iron oxides, sulfide minerals, and high-grade gold cells. Based on the singularity mapping results, two different hydrothermal mineralization systems of intermediate (mesothermal) to high thermal and epithermal to mesothermal are proposed, respectively; for the southern and northern parts of the Ghare Char area. Nevertheless, due to the mesothermal (orogenic) gold mineralization systems in the known Kervian and Ghlgholeh gold deposits, located in the vicinity of the Qareh Char area, and also the high concentration of As and Sb in these deposits, the possible presence of orogenic gold mineralization is more compared to the other types. Therefore, it is recommended to use the exploration criteria of the orogenic gold deposits for further exploration in the Qareh Char area...

کلیدواژه‌ها [English]

  • Gold mineralization
  • Singularity mapping
  • ilr transforamtion
  • Principal components analysis
  • Geochemistry
  • Qare Cher
[1]                    Cheng, Q., Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews, 2007. 32(1-2): p. 314-324.
[2]                    Cheng, Q., Multifractality and spatial statistics. Computers & Geosciences, 1999. 25(9): p. 949-961.
[3]                    Agterberg, F., Q. Cheng, and G. Bonham-Carter, Application of a three-parameter version of the model of de Wijs in regional geochemistry. GIS and Spatial Analysis, edited by: Cheng, Q. and Bonham-Carter, GF, 2005: p. 291-296.
[4]                    Cheng, Q., Multifractal imaging filtering and decomposition methods in space, Fourier frequency, and eigen domains. Nonlinear Processes in Geophysics, 2007. 14(3): p. 293-303.
[5]                    Qiuming, C., Singular mineralization processes and mineral resources quantitative prediction: new theories and methods. Earth Science Frontiers, 2007. 14(5): p. 42.
[6]                    Afzal, Peyman, et al. "Delineation of gold mineralized zones using concentration–volume fractal model in Qolqoleh gold deposit, NW Iran." Ore Geology Reviews 55 (2013): 125-133.
[7]                    Almasi, Alireza, et al. "Prospecting of gold mineralization in Saqez area (NW Iran) using geochemical, geophysical and geological studies based on multifractal modelling and principal component analysis." Arabian Journal of Geosciences 8 (2015): 5935-5947.
[8]                    Afzal, Peyman, Mohammad Abdideh, and Lili Daneshvar Saein. "Separation of productivity index zones using fractal models to identify promising areas of fractured reservoir rocks." Journal of Petroleum Exploration and Production Technology (2023): 1-10.
[9]                    Agterberg, F., Multifractal modeling of the sizes and grades of giant and supergiant deposits. International Geology Review, 1995. 37(1): p. 1-8.
[10]                  Mandelbrot, B.B., Multifractal measures, especially for the geophysicist. Fractals in geophysics, 1989: p. 5-42.
[11]                  Afzal, P., A. Adib, and N. Ebadati, Delineation of seismic zonation using fractal modeling in West Yazd province, Central Iran. Journal of Seismology, 2018. 22: p. 1377-1393.
[12]                  Afzal, P., et al., Correlation between rock types and Copper mineralization using fractal modeling in Kushk-e-Bahram deposit, Central Iran. Geopersia, 2018. 8(1): p. 131-141.
[13]                  Xiao, F., et al., A spatially weighted singularity mapping method applied to identify epithermal Ag and Pb-Zn polymetallic mineralization associated geochemical anomaly in Northwest Zhejiang, China. Journal of Geochemical Exploration, 2018. 189: p. 122-137.
[14]                  Xiao, F., et al., Singularity mapping and spatially weighted principal component analysis to identify geochemical anomalies associated with Ag and Pb-Zn polymetallic mineralization in Northwest Zhejiang, China. Journal of Geochemical Exploration, 2012. 122: p. 90-100.
[15]                  Zuo, R., et al., Application of singularity mapping technique to identify local anomalies using stream sediment geochemical data, a case study from Gangdese, Tibet, western China. Journal of Geochemical Exploration, 2009. 101(3): p. 225-235.
[16]                  Carranza, E.J.M., Usefulness of stream order to detect stream sediment geochemical anomalies. Geochemistry: Exploration, Environment, Analysis, 2004. 4(4): p. 341-352.
[17]                  Carranza, E.J.M., Geochemical anomaly and mineral prospectivity mapping in GIS. 2008: Elsevier.
[18]                  Carranza, E.J.M. and M. Hale, A catchment basin approach to the analysis of reconnaissance geochemical-geological data from Albay Province, Philippines. Journal of Geochemical Exploration, 1997. 60(2): p. 157-171.
[19]                  Ghezelbash, R., A. Maghsoudi, and M. Daviran, Prospectivity modeling of porphyry copper deposits: recognition of efficient mono-and multi-element geochemical signatures in the Varzaghan district, NW Iran. Acta Geochimica, 2019. 38: p. 131-144.
[20]                  Muller, J., et al., The use of principle component analyses in characterising trace and major elemental distribution in a 55 kyr peat deposit in tropical Australia: Implications to paleoclimate. Geochimica et Cosmochimica Acta, 2008. 72(2): p. 449-463.
[21]                  Pearson, K., Mathematical contributions to the theory of evolution. —on a form of spurious correlation which may arise when indices are used in the measurement of organs. Proceedings of the royal society of london, 1897. 60(359-367): p. 489-498.
[22]                  Rollinson, H.R., Using geochemical data: evaluation, presentation, interpretation. 2014: Routledge.
[23]                  Egozcue, J.J., et al., Isometric logratio transformations for compositional data analysis. Mathematical geology, 2003. 35(3): p. 279-300.
[24]                  Chen, G. and Q. Cheng, Singularity analysis based on wavelet transform of fractal measures for identifying geochemical anomaly in mineral exploration. Computers & Geosciences, 2016. 87: p. 56-66.
[25]                  Aitchison, J., The statistical analysis of compositional data. Journal of the Royal Statistical Society: Series B (Methodological), 1982. 44(2): p. 139-160