[1] Haeri, H., Sarfarazi, V., & Zhu, Z. (2016). Analysis of crack coalescence in concrete using neural networks. Strength of Materials, 48, 850-861.
[2] Mirzaei, H., Kakaie, R., Jalali, S. M. E., Shariati, M., & Hassani, B. (2010, June). Experimental investigation of crack propagation and coalescence in rock-like materials under uniaxial compression. In ISRM EUROCK (pp. ISRM-EUROCK). ISRM.
[3] Wong, R. H. C., Chau, K. T., Tang, C. A., & Lin, P. (2001). Analysis of crack coalescence in rock-like materials containing three flaws—part I: experimental approach. International Journal of Rock Mechanics and Mining Sciences, 38(7), 909-924.
[4] Tang, C. A., Lin, P., Wong, R. H. C., & Chau, K. T. (2001). Analysis of crack coalescence in rock-like materials containing three flaws—part II: numerical approach. International Journal of Rock Mechanics and Mining Sciences, 38(7), 925-939.
[5] Einstein, H. H., Veneziano, D., Baecher, G. B., & O'reilly, K. J. (1983, October). The effect of discontinuity persistence on rock slope stability. In International journal of rock mechanics and mining sciences & geomechanics abstracts (Vol. 20, No. 5, pp. 227-236). Pergamon.
[6] Reyes, O., & Einstein, H. H. (1991, September). Failure mechanisms of fractured rock-a fracture coalescence model. In 7th ISRM Congress. OnePetro.
[7] Bobet, A., & Einstein, H. H. (1998). Fracture coalescence in rock-type materials under uniaxial and biaxial compression. International Journal of Rock Mechanics and Mining Sciences, 35(7), 863-888.
[8] Sagong, M., & Bobet, A. (2002). Coalescence of multiple flaws in a rock-model material in uniaxial compression. International Journal of Rock Mechanics and Mining Sciences, 39(2), 229-241.
[9] Mughieda, O., & Karasneh, I. (2006). Coalescence of offset rock joints under biaxial loading. Geotechnical & Geological Engineering, 24, 985-999.
[10] Lee, H., & Jeon, S. (2011). An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression. International Journal of Solids and Structures, 48(6), 979-999.
[11] Haeri, H., Shahriar, K., Marji, M. F., & Moarefvand, P. (2014). Experimental and numerical study of crack propagation and coalescence in pre-cracked rock-like disks. International Journal of Rock Mechanics and Mining Sciences, 67, 20-28.
[12] Haeri, H., Shahriar, K., Marji, M. F., & Moarefvand, P. (2014). Cracks coalescence mechanism and cracks propagation paths in rock-like specimens containing pre-existing random cracks under compression. Journal of Central South University, 21, 2404-2414.
[13] Haeri, H., Shahriar, K., Marji, M. F., & Moarefvand, P. (2014). Investigation of fracturing process of rock-like Brazilian disks containing three parallel cracks under compressive line loading. Strength of Materials, 46, 404-416.
[14] Haeri, H. (2015). Propagation mechanism of neighboring cracks in rock-like cylindrical specimens under uniaxial compression. Journal of Mining Science, 51(3), 487-496.
[15] Lee, J., Ha, Y. D., & Hong, J. W. (2017). Crack coalescence morphology in rock-like material under compression. International Journal of Fracture, 203, 211-236.
[16] Asadizadeh, M., Hossaini, M. F., Moosavi, M., Masoumi, H., & Ranjith, P. G. (2019). Mechanical characterization of jointed rock-like material with non-persistent rough joints subjected to uniaxial compression. Engineering Geology, 260, 105224.
[17] Asadizadeh, M., & Rezaei, M. (2019). Surveying the mechanical response of non-persistent jointed slabs subjected to compressive axial loading utilizing GEP approach. International Journal of Geotechnical Engineering.
[18] Chen, M., Yang, S., Pathegama Gamage, R., Yang, W., Yin, P., Zhang, Y., & Zhang, Q. (2019). Fracture processes of rock-like specimens containing nonpersistent fissures under uniaxial compression. Energies, 12(1), 79.
[19] Li, X., Bai, Y., Chen, X., Zhao, X., & Lv, M. (2021). Experimental and numerical study on crack propagation and coalescence in rock-like materials under compression. The Journal of Strain Analysis for Engineering Design, 56(8), 548-562.
[20] Lin, Q., Cao, P., Wen, G., Meng, J., Cao, R., & Zhao, Z. (2021). Crack coalescence in rock-like specimens with two dissimilar layers and pre-existing double parallel joints under uniaxial compression. International Journal of Rock Mechanics and Mining Sciences, 139, 104621.
[21] Zhong, Z., Huang, D., Song, Y., & Cen, D. (2022). Three-dimensional cracking and coalescence of two spatial-deflection joints in rock-like specimens under uniaxial compression. International Journal of Rock Mechanics and Mining Sciences, 159, 105196.
[22] Chang, X., Wang, S., Li, Z., & Chang, F. (2022). Cracking behavior of concrete/rock bi-material specimens containing a parallel flaw pair under compression. Construction and Building Materials, 360, 129440.
[23] Niu, Y., Wang, J. G., Wang, X. K., Hu, Y. J., Zhang, J. Z., Zhang, R. R., & Hu, Z. J. (2023). Numerical study on cracking behavior and fracture failure mechanism of flawed rock materials under uniaxial compression. Fatigue & Fracture of Engineering Materials & Structures, 46(6), 2096-2111.
[24] Lajtai, E. Z. (1969). Strength of discontinuous rocks in direct shear. Geotechnique, 19(2), 218-233.
[25] Gehle, C., & Kutter, H. K. (2003). Breakage and shear behaviour of intermittent rock joints. International Journal of Rock Mechanics and Mining Sciences, 40(5), 687-700.
[26] Zhang, H. Q., Zhao, Z. Y., Tang, C. A., & Song, L. (2006). Numerical study of shear behavior of intermittent rock joints with different geometrical parameters. International Journal of Rock Mechanics and Mining Sciences, 43(5), 802-816.
[27] Ghazvinian, A., Sarfarazi, V., Schubert, W., & Blumel, M. (2012). A study of the failure mechanism of planar non-persistent open joints using PFC2D. Rock mechanics and rock engineering, 45, 677-693.
[28] Cao, P., Fan, W. C., & Zhang, K. (2013). Experimental Research on Failure Modes of Specimen Containing Non-Coplanar Joints. Advanced Materials Research, 779, 332-336.
[29] Sarfarazi, V., Ghazvinian, A., & Schubert, W. (2016). Numerical simulation of shear behaviour of non-persistent joints under low and high normal loads. Periodica Polytechnica Civil Engineering, 60(4), 517-529.
[30] Sarfarazi, V., Haeri, H., Shemirani, A. B., & Zhu, Z. (2017). Shear behavior of non-persistent joint under high normal load. Strength of Materials, 49, 320-334.
[31] Asadizadeh, M., Moosavi, M., Hossaini, M. F., & Masoumi, H. (2018). Shear strength and cracking process of non-persistent jointed rocks: an extensive experimental investigation. Rock Mechanics and Rock Engineering, 51, 415-428.
[32] Lin, H., Ding, X., Yong, R., Xu, W., & Du, S. (2019). Effect of non-persistent joints distribution on shear behavior. Comptes Rendus Mécanique, 347(6), 477-489.
[33] Zhang, Y., Jiang, Y., Asahina, D., & Wang, C. (2020). Experimental and numerical investigation on shear failure behavior of rock-like samples containing multiple non-persistent joints. Rock Mechanics and Rock Engineering, 53, 4717-4744.
[34] Meng, F., Song, J., Wang, X., Yue, Z., Zhou, X., & Wang, Z. (2022). Mechanical behavior of non-persistent joints with different geometric configurations and roughness in solid rock and concrete material. Construction and Building Materials, 337, 127564.
[35] Guo, Y., Huang, D., & Cen, D. (2024). Crack Propagation and Coalescence Mechanism of a Rock Bridge between a Parallel Fissure Pair in a Direct Shear Test with Unloading Normal Stress. International Journal of Geomechanics, 24(1), 04023258.
[36] Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in engineering software, 69, 46-61.
[37] Chawla, V., Chanda, A., & Angra, S. (2019). The scheduling of automatic guided vehicles for the workload balancing and travel time minimization in the flexible manufacturing system by the nature-inspired algorithm. Journal of Project Management, 4(1), 19-30.
[38] Ferreira, C. (2006). Gene expression programming: mathematical modeling by an artificial intelligence (Vol. 21). Springer.
[39] Sabzevari, Y., Nasrollahi, A., Sharifipour, M., & Shahinejad, B. (2022). Application of Multivariate Regression and Gene Expression Programming in Modeling Reference Evapotranspiration (Case Study: Khorramabad Station). Irrigation Sciences and Engineering, 45(1), 35-48. (In Persian)
[40] Armaghani, D. J., Faradonbeh, R. S., Rezaei, H., Rashid, A. S. A., & Amnieh, H. B. (2018). Settlement prediction of the rock-socketed piles through a new technique based on gene expression programming. Neural Computing and Applications, 29, 1115-1125.