مدل‌سازی عددی بررسی رفتار تونل کم‌عمق در زمین‌های ماسه‌ای تحکیم نیافته با مدل رفتاری هایپوپلاستیک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی معدن، دانشکدگان فنی، دانشگاه تهران، ایران

2 گروه مهندسی معدن، دانشکده مهندسی، دانشگاه بیرجند، بیرجند، ایران

3 دانشکده مهندسی معدن و منابع انرژی، دانشگاه نیو ساوت ولز، سیدنی، استرالیا

چکیده

پیش‌بینی درست رفتار زمین حین حفاری تونل نسبت به آنچه در واقعیت اتفاق خواهد افتاد، یک امر بسیار پر چالش، به‌ویژه در تونل‌های شهری است. از طرفی هرقدر این پیش‌بینی سریع و بدون نیاز به صرف هزینه بیشتر باشد به‌مراتب باارزش‌تر خواهد بود. در مطالعه حاضر سعی شده است که کارایی مدل رفتاری هایپوپلاستیک برای پیش‌بینی نتایج حاصل از مدل‌سازی فیزیکی در آزمایشگاه موردبررسی قرار گیرد. برای این منظور، در این تحقیق رفتار محیط اطراف یک تونل در حال حفر در محیط ماسه‌ای با استفاده از مدل رفتاری هایپوپلاستیک شبیه سازی شده و خصوصیات مقاومتی خاک موردمطالعه بر اساس نتایج آزمایش سه محوره صحت سنجی شده است. هم‌زمان با شبیه‌سازی فرایند حفر تونل، مقادیر نشست سطح زمین و تغییرات تنش در خاک بالای تونل، به ازای مقادیر مختلف چگالی خاک و عمق تونل، اندازه‌گیری شده و نتایج با مدل‌سازی فیزیکی و روش تحلیلی مقایسه شد. نتایج این تحقیق مطابقت خوبی با نتایج مدل‌سازی فیزیکی و تئوری نشان می‌دهد. بر اساس نتایج این تحقیق، مدل رفتاری هایپوپلاستیک قابلیت پیش‌بینی رفتار خاک‌های دانه‌ای سست را دارد. همگرایی تونل منجر به آشفتگی میدان تنش اطراف تونل شده و بر اثر پدیده قوس زدگی خاک در اطراف تونل، توزیع تنش از حالت خطی خارج می‌شود. در شرایط یکسان، اگرچه با افزایش عمق تونل زون گسیخته بالای تونل گسترش می‌یابد، نشست سطح زمین کاهش پیدا می‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical modeling of shallow tunnels in unconsolidated sandy soils using a hypo-plastic model

نویسندگان [English]

  • Nader Moussaei 1
  • Mohammad Hossein Khosravi 2
  • Mohammad Farouq Hossaini 3
1 Dept. of Mining Engineering, Technical College, University of Tehran, Iran.
2 Dept. of Mining Engineering, Faculty of Engineering, Birjand University, Birjand, Iran.
3 Dept. of Mining and Energy Resources Engineering, University of New South Wales, Sydney, Australia.
چکیده [English]

Summary
Correctly predicting the behavior of the ground during tunnel excavation compared to what will happen in reality is a very challenging matter, especially in urban tunnels. On the other hand, the faster this prediction is and without the need to spend more money, the more valuable it will be. In the present study, the goal is to investigate the effectiveness of a hypo-plastic model to predict the results of physical modeling in the laboratory. For this purpose, the behavior of the surrounding environment of a tunnel in sandy soil was simulated using a hypo-plastic behavioral model, and the resistance characteristics of the studied soil were validated based on the triaxial test results. At the same time as simulating the tunnel excavation process, the settlement of the ground surface and stress changes in the soil above the tunnel were measured for different values of soil densities and tunnel depths. The results of this research showed a good agreement with the results of physical and theoretical modeling. Based on the results of this research, the hypo-plastic model can predict the behavior of loose granular soils. Convergence of the tunnel leads to disturbance of the stress field around the tunnel, and due to the phenomenon of soil arching around the tunnel, the stress distribution deviates from the linear state. Under the same conditions, although the loosened zone above the tunnel expands with the increase of the tunnel depth, the settlement of the ground surface decreases.
Introduction
The constitutive model determines the stress-strain behavior of a material under an applied load through numerical simulation. The main factor is the linear or nonlinear behavior of the soil at small or large strains respectively [1-5]. The ground around the tunnel can experience different stress paths during excavation. Failure criteria should be updated based on the stress path through the model. It is an important parameter of the hypo-plastic material model that can be used to simulate critical conditions and stress path effects considering the soil void ratio [6,7]. The hypo-plastic constitutive model, like the hypo-elastic constitutive model, is a tensor function and does not divide the deformation into linear and nonlinear parts like the theory of plasticity, but defines a nonlinear function to relate the stress to the applied strain. [8-23]. This study compares the results of the physical and numerical simulation (with a hypo-plastic constitutive model) of the full-face excavation of the tunnel as well as the extension of the loosened zone based on the stress differences.
 
Methodology and Approaches
The 15 numerical models were simulated based on the physical model [22] through Abaqus V6.13, and applying a hypo-plastic constitutive model as well as the length scale factor of 50. The plain strain numerical model with fixed side and upon boundary.
Hypo-plastic model was discredited by Wu and Kolymbas [26] as well as Wang and Wu [2] was used (Eq.1)                                                                                            
To simulate the critical condition the function proposed by Wang et al. [24-25] was added to the constitutive model as Eq.2.
The constitutive model was calibrated based on triaxial test results, which done by three different soil densities.
Results and Conclusions
To verify the simulated models, the maximum settlement was compared. The results obtained from the physical and numerical models were in good agreement, however for dense soil especially for deep tunnel models, the settlement threshold for the numerical model was larger than the physical model. The physical model was prepared by compaction and sand pluviation method, and a modification parameter [22] was calculated to justify these two methods, which is calculated for shallow models and should be updated by deep model test results.
Briefly, the results of this study are summarized below:
The numerical model with the hypo-plastic constitutive model is consistent with the physical and theoretical model results and can simulate loose soils.
The non-linear stress field above the tunnel was verified by using a numerical model.
The surface settlement increases linearly with the convergence of the tunnel at the same depth and soil density.
For loose sand, the soil density has an unremarkable effect on the extension of the failure zone.
In addition to surface settlement, the height of the damage zone is directly related to the depth of the tunnel for the same soil density.

کلیدواژه‌ها [English]

  • Shallow tunnels
  • Hypoplastic model
  • Numerical modeling
  • Loosened zone above the tunnel
[1]                 Wang, X., An updated hypoplastic model, its implementation, and its application in tunnelling. 2009, PhD thesis, University of Natural Resources and applied life sciences, Vienna.
[2]                 Lade, P.V., Elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces. International journal of solids and structures, 1977. 13(11): p. 1019-1035.
[3]                 Dafalias, Y., and Hermann, L., Soil mechanics-transient and cyclic loads, Chapter 10:\Bounding surface formulation of soil plasticity, GN Pande y OC Zienkiewicz. 1982, John Wiley, New York, USA.
[4]                 Mroz, Z., and Pietruszczak, S., A constitutive model for sand with anisotropic hardening rule. International Journal for Numerical and Analytical Methods in Geomechanics, 1983. 7(3): p. 305-320.
[5]                 Wu, W., Bauer, E., and Kolymbas, D., Hypoplastic constitutive model with critical state for granular materials. Mechanics of materials, 1996. 23(1): p. 45-69.
[6]                 Wu, W., and Bauer, E., A simple hypoplastic constitutive model for sand. International Journal for Numerical and Analytical Methods in Geomechanics, 1994. 18(12): p. 833-862.
[7]                 Katoh, Y., Miyake, M., and Wada, M. Ground deformation around shield tunnel. in Proceedings of the International Conference on Centrifuge Modelling (Centrifuge’98). 1998.
[8]                 Wu, W., Hypoplasticity as a mathematical model for the mechanical behavior of granular materials. Publication Series of the Institute of Soil Mechanics and Rock Mechanics, Karlsruhe University, 1992.
[9]                 Bauer, E., Calibration of a comprehensive hypoplastic model for granular materials. Soils and foundations, 1996. 36(1): p. 13-26.
[10]             Von Wolffersdorff, P.A., A hypoplastic relation for granular materials with a predefined limit state surface. Mechanics of Cohesive‐frictional Materials: An International Journal on Experiments, Modelling and Computation of Materials and Structures, 1996. 1(3): p. 251-271.
[11]             Wu, W., Lin, J., and Wang, X., A basic hypoplastic constitutive model for sand. Acta Geotechnica, 2017. 12(6): p. 1373-1382.
[12]             Wu, W., and Niemunis, A., Failure criterion, flow rule and dissipation function derived from hypoplasticity. Mechanics of Cohesive‐frictional Materials: An International Journal on Experiments, Modelling and Computation of Materials and Structures, 1996. 1(2): p. 145-163.
[13]             Tokuoka, T., Yield conditions and flow rules derived from hypo-elasticity. Archive for Rational Mechanics and Analysis, 1971. 42(4): p. 239-252.
[14]             Tokuoka, T., Rate type plastic material with kinematic work-hardening. Acta Mechanica, 1977. 27(1): p. 145-154.
[15]             Davis, R., and Mullenger, G., Derived failure criteria for granular media. International Journal for Numerical and Analytical Methods in Geomechanics, 1979. 3(3): p. 279-283.
[16]             Matsuoka, H., and Nakai, T., Stress-deformation and strength characteristics of soil under three different principal stresses. in Proceedings of the Japan Society of Civil Engineers. 1974. Japan Society of Civil Engineers.
[17]             Lade, P.V., and Duncan, J.M., Elastoplastic stress-strain theory for cohesionless soil. Journal of the Geotechnical Engineering Division, 1975. 101(10): p. 1037-1053.
[18]             Coon, M., and Evans, R., Incremental constitutive laws and their associated failure criteria with application to plain concrete. international Journal of Solids and Structures, 1972. 8(9): p. 1169-1183.
[19]             Romano, M., A continuum theory for granular media with a critical state. Arch. Mech, 1974. 26(20): p. 1011-1028.
[20]             Davis, R., and Mullenger, G., A rate‐type constitutive model for soil with a critical state. International Journal for Numerical and Analytical Methods in Geomechanics, 1978. 2(3): p. 255-282.
[21]             Hadamard, J., Lectures on Cauchy’s problem in linear partial differen-tial equations. Yale Univ. Press, New Haven. Oxford Univ. Press, London, 1923. 1(923): p. 1.
[22]             Moussaei, N., Khosravi, M.H., and Hossaini, M.F., Physical modeling of tunnel induced displacement in sandy grounds. Tunnelling and Underground Space Technology, 2019. 90: p. 19-27.
[23]             Wang, X., and Wu, W., An updated hypoplastic constitutive model, its implementation and application, in Bifurcations, instabilities and degradations in geomaterials. 2011, Springer. p. 133-143.
[24]             Wang, S., Wu, W., Yin, Z.Y., Peng, C., and He, X., Modelling the time‐dependent behaviour of granular material with hypoplasticity. International Journal for Numerical and Analytical Methods in Geomechanics, 2018. 42(12): p. 1331-1345.
[25]             Li, X.S., and Wang, Y., Linear representation of steady-state line for sand. Journal of geotechnical and geoenvironmental engineering, 1998. 124(12): p. 1215-1217.
[26]             Wu, W., and Kolymbas, D., Hypoplasticity then and now, in Constitutive modelling of granular materials. 2000, Springer. p. 57-105.
[27]             Sveen, J.K., An introduction to MatPIV v. 1.6. 1. Preprint series. Mechanics and Applied Mathematics http://urn. nb. no/URN: NBN: no-23418, 2004.
[28]             Marshall, A., Farrell, R., Klar, A., and Mair, R., Tunnels in sands: the effect of size, depth and volume loss on greenfield displacements. Géotechnique, 2012. 62(5): p. 385.
[29]             Pipatpongsa, T., Khosravi, M.H., Wattanachai, P., and Likitlersuang, S. Stress Distributions in Storage Silo under Uniform Vertical Pressure, in the 22nd KKCNN symposium on Civil Engineering. 2009: Chiang Mai, Thailand.
[30]             Kirsch, A., Experimental investigation of the face stability of shallow tunnels in sand. Acta Geotechnica, 2010. 5(1): p. 43-62.
[31]             Moussaei, N., Sharifzadeh, M., Sahriar, K. and Khosravi, M.H., A new classification of failure mechanisms at tunnels in stratified rock masses through physical and numerical modeling. Tunnelling and Underground Space Technology, 2019. 91: p. 103017.
[32]             Moussaei, N., Sharifzadeh, M., Sahriar, K. and Khosravi, M.H., Evaluation of discontinuity and opening geometry effects on roof beam deflection. ISRM International Symposium-EUROCK 2016. 2016. International Society for Rock Mechanics and Rock Engineering.
[33]             Moussaei, N., Sharifzadeh, M., Sahriar, K. and Khosravi, M.H., On Stability of Shallow Tunnel by Model Test and Numerical Simulation. Proceedings of China-Europe Conference on Geotechnical Engineering. 2018. Springer.
[34]             Chen, C.N., Huang, W., Tseng, C., Stress redistribution and ground arch development during tunneling, Tunnelling and Underground Space Technology, Volume 26, Issue 1, 2011, Pages 228-235.
[35]             Moussaei, N., Khosravi, M.H., and Hossaini, M.F., Physical modeling of soil arching around shallow tunnels in sandy grounds, International Journal of Mining & Geo-Engineering, Volume 56-4, 2022, Pages 413-422.