تعیین فشارهای سازندی با تلفیق روش‌های فرکتالی و زمین‌آماری در یکی از سازندهای هیدروکربوری جنوب غرب ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی نفت و معدن، دانشگاه آزاد اسلامی، واحد تهران جنوب، تهران، ایران

2 شرکت ملی نفت ایران، مدیریت اکتشاف، اداره حفاری، تهران، ایران

3 گروه پژوهش ژئوفیزیک، پژوهشکده علوم زمین، پژوهشگاه صنعت نفت، تهران، ایران

4 گروه علوم زمین، دانشکده علوم طبیعی، دانشگاه تبریز، تبریز، ایران

چکیده

آگاهی دقیق از فشارهای منفذی و شکست سازند برای حفر چاه‌ها به‌صورت ایمن با وزن گل مطلوب ضروری است. این مطالعه چالشی در زمینه مطالعات فشار سازند در میدان آزادگان جنوبی است که عموماً کربناته بوده و به‌جز سازند کژدمی فاقد لایه شیلی هستند. جهت مطالعات فشار سازند در عمیق‌ترین سازند مخزنی فهلیان، نیاز به مدل‌سازی کلیه سازندهای بالایی جهت کسب نتایج دقیق‌تر است. با توجه تعداد کم جفت داده‌های فشارمؤثر-سرعت در کل داده‌های سازند فهلیان و ضریب همبستگی بسیار پایین رابطه باورز، نیاز به تفکیک این سازند به دو بخش بالایی و پایینی و انجام مدل‌سازی به تفکیک سازند‌ها پس از تکمیل مکعب‌های سرعت فشاری و فشار مؤثر بوده است. این مطالعه بر اساس داده‌های 23 حلقه چاه و تعبیر و تفسیر داده‌های لرزه‌ای صورت گرفته است و مدل‌های فشار مؤثر، منفذی و شکست سازند از مدل‌های زمین‌آماری ترکیبی تعیین‌شده و با مدل فرکتالی فشار-حجم مورد صحت سنجی قرار گرفته‌اند. بیشترین میزان همبستگی بین مکعب نهایی فشار مؤثر و مکعب سرعت مربوط به سازندهای فهلیان پایینی با 86/0 و ایلام با 71/0 است. بر اساس مکعب‌های نهایی فشار سازند، حداکثر فشار منفذی به میزان 10000 پام در سازندهای گدوان تا فهلیان بالایی و حداکثر فشار شکست سازند نیز به میزان 13000 پام در سازندهای فهلیان پایینی تا گوتنیا به‌دست‌آمده است. در این تحقیق نوآوری جدیدی برای مطالعه فشارهای سازند به روش فرکتالی فشار-حجم انجام‌شده است. همچنین جهت ساخت مدل نهایی مکعب فشارهای سازندی در کل وسعت میدان آزادگان جنوبی، برای اولین بار از ترکیب روش‌های زمین‌آماری شبیه‌سازی گوسی متوالی و کوکریجینگ با مکعب مقاومت صوتی حاصل از وارون سازی لرزه‌ای به‌صورت توأم استفاده شده است. بر اساس محاسبه ماتریس لوگرشیو حاصل از مدل فرکتالی مقدار-حجم، بیشترین میزان تطبیق نهایی در بازه‌های سنگ‌آهک غالب به میزان 74/0 مربوط به سازندهای آسماری تا سروک محاسبه شده که نشان از تطابق بالای مدل مکعب فشار منفذی با استفاده از ترکیب شبیه‌سازی گوسی متوالی توام با کوکریجینگ و امپدانس صوتی حاصل از وارون سازی است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Formation Pressures Determination Utilizing the Integration of Fractal and Geostatistical Modelling in a Hydrocarbon Formation of SW Iran

نویسندگان [English]

  • Pooria Kianoush 1 2
  • Nasser Keshavarz Faraj Khah 3
  • Peyman Afzal 1
  • Emad Jamshidi 2
  • Amir Hossein Bangian Tabrizi 1
  • Ali Kadkhodaie 4
1 Dept. of Petroleum and Mining Engineering, Islamic Azad University, South Tehran Branch, Tehran, Iran
2 Iran National Oil Company, Exploration Management, Drilling Department, Tehran, Iran
3 Dept. of Geophysics Research , Earth Sciences Research Institute, Oil Industry Research Institute, Tehran, Iran
4 Dept. of Earth Sciences, Faculty of Natural Sciences, Tabriz University, Tabriz, Iran
چکیده [English]

An authentic understanding of formation pore and fracture pressures is essential to define a safe and optimum mud window in drilling oil and gas wells. This investigation is a challenge in formation pressure studies in the South Azadegan field, which is typically carbonated with very low traces of shale beds, except in the Kazhdumi Formation. The wells drilled in this field hinged on the geological information and pore pressure alterations, can be categorized into three classes; Gachsaran, Pabdeh, and surface formations containing marl. These parameters directly affect the selection of the casing shoe depth and the well schematic. Correspondingly, target reservoir formations, i.e., Sarvak, Kazhdumi, Gadvan, and Fahliyan, and well profiles are other parameters that can classify wells in terms of drilling. It is necessary to analyze and model all upper formation pressures to obtain more precise results to investigate the pore pressure profile in these formations. Effective pressure log data reveals an increasing trend in formation pressure with depth in all wells. Besides, there are a few effective pressure-velocity data pairs in the total data of the Fahliyan Formation of Azadegan wells. With the small number of effective pressure-velocity data pairs in the total data of the Fahliyan Formations of Azadegan wells and the very low correlation coefficient of the Bowers relation for the wells of the Fahliyan Formations, it was necessary to separate this formation into two upper and lower parts. So the modeling has been performed by constructing compressional velocity-effective pressure cubes. This research was based on the data gathered from various drilled wells in this region and the interpretation of seismic data. Also, the effective, pore and formation fracture models have been determined from the integrated geostatistical models validated with the pressure-volume fractal model. The most heightened correlation between the final velocity and effective pressure cubes corresponds to the Ilam with 0.71 and the lower Fahliyan Formations with 0.86, which signifies the model's accuracy with the original data. Based on the final pressure cubes of the formation, the maximum pore pressure of 10,000 psi in the Gadvan to Upper Fahliyan Formations and the maximum fracture pressure of 13,000 psi in the lower Fahliyan to Gotnia Formations have been obtained. In this research, an innovation has been made to study the formation pressures utilizing fractal pressure-volume (P-V) methods. Also, for the construction of the final formation pressure cube model in the entire area of the South Azadegan field, for the first time, the combination of geostatistical methods of sequential Gaussian simulation (SGS) and co-kriging with the acoustic impedance (AI) cube obtained from seismic inversion has been used together. Computation of the Logratio matrix resulting from the fractal pressure-volume model revealed the maximum overall accuracy (OA) in the dominant limestone intervals as 0.74 at the depths of 2000-3000 meters, corresponding to the Sarvak to Asmari Formations. The results exhibit the high correspondence of the pore pressure cube model, obtained by sequential Gaussian simulation (SGS) combined with co-kriging and acoustic impedance inversion...

کلیدواژه‌ها [English]

  • Seismic velocity model
  • sequential Gaussian simulation
  • formation pressure cube
  • P-V Fractal model
  • Logratio matrix
[1]                 Adim, A., Riahi, M., and Bagheri, M. (2018). Estimation of pore pressure by Eaton and Bowers methods using seismic and well survey data. Journal of Applied Geophysical Research. 4(2): 275-267 (in Persian).
[2]                  Maddahi, A., Ghazi Nezhad, S., Ismailpour, S.,  and Heydari, M. (2014). Feasibility study of exploiting four-dimensional seismic studies of Sarvak reservoir in Azadegan field. Journal of Petroleum Research. 78: 126-117 (in Persian).
[3]                 Lee, M.W., Hutchinson, D.R., Dillon, W.P.,  Miller, J.J., Agena, W.F., and Swift, B.A. (1993). Method of estimating the amount of in situ gas hydrates in deep marine sediments. Marine and Petroleum Geology. 10(5): 493-506. https://doi.org/10.1016/0264-8172(93)90050-3.
[4]                 Gardner, G.H.F., Gardner, L.W., and Gregory, A.R. (1974). FORMATION VELOCITY AND DENSITY—THE DIAGNOSTIC BASICS FOR STRATIGRAPHIC TRAPS. GEOPHYSICS. 39(6): 770-780. https://doi.org/10.1190/1.1440465.
[5]                 Morgan, P. (1999). Azadegan Field Geophysical Interpretation, ConocoPhillips UK LTD: England.
[6]                 Abdollahie Fard, I., Braathen, A., Mokhtari, M., and Alavi, A. (2006). Structural models for the South Khuzestan area based on reflection seismic data, Shahid Beheshti University Tehran.
[7]                 Zoback, M.D., Barton, C.A., Brudy, M., Castillo, D.A., Finkbeiner, T., Grollimund, B.R.,  Moos, D.B.  Peska, P.,  Ward, C.D., and Wiprut, D.J.  (2003). Determination of stress orientation and magnitude in deep wells. International Journal of Rock Mechanics and Mining Sciences. 40(7): 1049-1076 https://doi.org/10.1016/j.ijrmms.2003.07.001.
[8]                 Kianoush, P., Mohammadi, G., Hosseini, S.A., Keshavarz Faraj Khah, N., and Afzal, P.  (2023b). Determining the drilling mud window by integration of geostatistics, intelligent, and conditional programming models in an oilfield of SW Iran. Journal of Petroleum Exploration and Production Technology. 13(6): 1391-1418. https://doi.org/10.1007/s13202-023-01613-6.
[9]                 Kianoush, P., Afzal, P., Mohammadi, G., Keshavarz Faraj Khah, N., and Hosseini, S.A. (2023d). Application of Geostatistical and Velocity-Volume Fractal Models to Determine Interval Velocity and Formation Pressures in an Oilfield of SW Iran. Journal of Petroleum Research. 33(1402-1): 146-170.
[10]              Amiri Bakhtiar, M.S., Zargar, G., Riahi, M.A., and Ansari, H.R. (2017). Seismic inversion by spectral simulation in one of the oil fields in southwestern Iran, the third oil exploration geophysics seminar. presented at the Exploration Directorate of the National Iranian Oil Company,
[11]             Haris, A., Sitorus, R., and Riyanto, A. (2017). Pore pressure prediction using probabilistic neural network: case study of South Sumatra Basin. IOP Conference Series: Earth and Environmental Science. 62: 012021. https://doi.org/10.1088/1755-1315/62/1/012021.
[12]             Moraseli, S., Hashemizadeh, A., and Navaie, F.  (2022). Assessing the challenges of production from unconventional gas reservoirs from a geomechanical point of view. Journal of Analytical and Numerical Methods in Mining Engineering. https://doi.org/10.22034/anm.2022.2857.
[13]             Hosseini, A., Saberi, M.H., and Zarenejad, B. (2020). Investigation of the Possibility of Hydrocarbon Resources in the Khouriyan Region of Southern Semnan by Using Geochemical Methods. Journal of Analytical and Numerical Methods in Mining Engineering. 10(23): 17-29.
[14]             Kianoush, P., Mohammadi, G., Hosseini, S.A., Keshavarz Faraj Khah, N, and Afzal, P. (2023a). Inversion of seismic data to modeling the Interval Velocity in an Oilfield of SW Iran. Results in Geophysical Sciences: 100051. https://doi.org/10.1016/j.ringps.2023.100051.
[15]             Hosseini, S.A., Keshavarz Faraj Khah, N., Kianoush, P., Arjmand, Y., Ebrahimabadi, A., and Jamshidi, E. (2023b). Tilt angle filter effect on noise cancelation and structural edges detection in hydrocarbon sources in a gravitational potential field. Results in Geophysical Sciences. 14: 100061. https://doi.org/10.1016/j.ringps.2023.100061.
[16]             Aghebati, R. (2008). Introduction of a field: Azadegan field development plan. Scientific- Propagative Journal of Oil & Gas EXPLORATION & PRODUCTOIN. 52: 6-8 (in Persian).
[17]             Poorsiami, H. (2013). Modeling the pore pressure of a hydrocarbon reservoir in southwestern Iran using well-logging data. Journal of Petroleum Research. 23: 86-72 (in Persian).
[18]             Amirzadeh, M., Kamali, M.R., and Nabi Bidehandi, M. (2013). Investigation of reservoir characteristics by performing seismic data conversion and seismic markers in Sarvak Formation in one of the oil fields in southwestern Iran. Journal of Petroleum Research. 23(75): 20-29 (in Persian).
[19]             Kianoush, P., Raveyeh, H.,  Keshavarz Faraj Khah, N.,  and Sokooti, M.R. (2021). Modeling, interpreting and analyzing formation pressures by Geostatistical and intelligence methods using seismic and well logging data to optimize exploration drilling operations. Scientific Journal of Oil & Gas Exploration & Production. 1399(185): 78-92 (In Persian).http://dorl.net/dor/20.1001.1.25381652.1399.1399.185.10.6.
[20]             Kiani, A., Saberi, M.H., Zare Nejad, B., Asadi Mehmandosti, E. and Rahmani, N. (2021). Reservoir Zonation Based on Petrographic and Petrophysical Data (Case Study: Upper Part of Sarvak Formation in an Oilfield in Abadan Plain, SW Iran). Journal of Analytical and Numerical Methods in Mining Engineering. 11(28): 51-69. https://doi.org/10.22034/anm.2021.2130.
[21]             Hosseini, S.A., Keshavarz Faraj Khah, N., Kianoush, P, Afzal, P., Shakiba, S., and Jamshidi, E.  (2023a). Boundaries Determination in Potential Field Anomaly Utilizing Analytical Signal Filtering and its Vertical Derivative in Qeshm Island SE Iran. Results in Geophysical Sciences. 14: 100053. https://doi.org/10.1016/j.ringps.2023.100053.
[22]             Castagna J. P., B.M.L.E.R.L. (1985). Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks. GEOPHYSICS. 50(4): 571-581.
[23]             Castagna, J.P., Batzle, M.L., and Kan. (1993). Rock Physics:The link between rock properties and AVO response, In: Offset-dependet reflectivity - Theory and practice of AVO analysis. Investigations in Geophysics: 135-171.
[24]             Kianoush, P., Mohammadi, G., Hosseini, S.A., Keshavarz Faraj Khah, N., and Afzal, P.  (2022b). Application of Pressure-Volume (P-V) Fractal Models in Modeling Formation Pressure and Drilling Fluid Determination in an Oilfield of SW Iran. Journal of Petroleum Science and Technology. 12(1): 2-20. https://doi.org/10.22078/jpst.2022.4845.1809.
[25]             Shakiba, S., Asghari, O., and Keshavarz Faraj Khah, N. (2018). A combined approach based on MAF analysis and AHP method to fault detection mapping: A case study from a gas field, southwest of Iran. Journal of Applied Geophysics. 148: 8-15. https://doi.org/10.1016/j.jappgeo.2017.11.003.
[26]             Fatahi, H., Askari, M., and Majdi Far, S. (2016). Estimation of shear wave velocity in one of the hydrocarbon reservoirs of southwest Iran using different well logs and a new intelligent combined method. Journal of Advanced Applied Geology. 22: 35-43 (in Persian).
[27]             Bowers, G.L. (1995). Pore pressure estimation from velocity data: Accounting for overpressure mechanisms besides undercompaction. SPE Drilling & Completion. 10(02): 89-95. https://doi.org/10.2118/27488-PA.
[28]             Bowers, G.L. (2002). Detecting high overpressure. The leading edge. 21(2): 174-1.
[29]             Liu, J., Chen, P., Xu, K., Yang, H., Liu, H., and Liu, Y. (2022). Fracture stratigraphy and mechanical stratigraphy in sandstone: A multiscale quantitative analysis. Marine and Petroleum Geology. 145: 105891. https://doi.org/10.1016/j.marpetgeo.2022.105891.
[30]             Radwan, A.E. (2020). Wellbore stability analysis and pore pressure study in Badri field using limited data, Gulf of Suez, Egypt. AAPG/datapages search and discovery Article. 20476.
[31]             Zhang, Z., Sun, B., Wang, Z., Pan, S.,  Lou, W., and Sun, D. (2022). Formation Pressure Inversion Method Based on Multisource Information. SPE Journal. 27(02): 1287-1303. https://doi.org/10.2118/209206-pa.
[32]             Aryafar, A., Doulati Ardejani, F., Mahvi, M.R., and Kianoush, P. )2007(. Hydrochemical studies of Sangan Iron mine aquifer to determine water quality using water samples taken during pumping tests, 26th Earth Science Conference, Tehran, (In Persian) https://civilica.com/doc/40310.
[33]             Liguo, Z., Zhu, T., Hao, T., Zhang, X., Wang, X ., and Zhang, L. (2020). Prediction method of formation pressure for the adjustment well in the reservoir with fault. Journal of Physics: Conference Series. 1707: 012012. https://doi.org/10.1088/1742-6596/1707/1/012012.
[34]             Mahvi, M.R., and Kianoush, P. (2007). Presenting the drainage model of attacking water into Chadormalu open pit mine in order to prevent of water attack and increase the safety factor of mine, 7th congress on safety, health and environment in mines and related industries. Sarcheshmeh Copper Complex, Sarcheshmeh, Iran, pp. 15-31 (In Persian). https://civilica.com/doc/26254.
[35]             Darvishpour, A., Cheraghi Seifabad, M., Wood, D.A. and Ghorbani, H. (2019). Wellbore stability analysis to determine the safe mud weight window for sandstone layers. Petroleum Exploration and Development. 46(5): 1031-1038. https://doi.org/10.1016/S1876-3804(19)60260-0.
[36]             Kianoush, P., Mohammadi, G., Hosseini, S.A., Keshavarz Faraj Khah, N., and Afzal, P. (2023c). ANN-based estimation of pore pressure of hydrocarbon reservoirs—a case study. Arabian Journal of Geosciences. 16(5): 302.
[37]             Kelkar, M. and Perez, G. (2002). Applied geostatistics for reservoir characterization. Society of Petroleum Engineers. 264 https://doi.org/10.2118/9781555630959.
[38]             Lantuéjoul, C. (2001). Geostatistical simulation: models and algorithms. Springer Science & Business Media. 1139 https://doi.org/10.1007/978-3-662-04808-5
[39]             Soltani, F., Afzal, P., and Asghari, O. (2014). Delineation of alteration zones based on Sequential Gaussian Simulation and concentration–volume fractal modeling in the hypogene zone of Sungun copper deposit, NW Iran. Journal of Geochemical Exploration. 140: 64-76. https://doi.org/10.1016/j.gexplo.2014.02.007.
[40]             Kianoush, P., Mohammadi, G., Hosseini, S.A., Keshavarz Faraj Khah, N., and Afzal, P.  (2022a). Compressional and Shear Interval Velocity Modeling to Determine Formation Pressures in an Oilfield of SW Iran. Journal of Mining and Environment. 13(3): 851-873. https://doi.org/10.22044/jme.2022.12048.2201.
[41]             Armstrong, M., Galli, A., Beucher, H., Loc'h, G., Renard, D., Doligez, B., Eschard, R. and Geffroy, F. (2011). Plurigaussian simulations in geosciences. Springer Berlin, Heidelberg. Springer Science & Business Media https://doi.org/10.1007/978-3-662-12718-6.
[42]             Kianersi, A., Adib, A. and Afzal, P. (2021). Detection of Effective Porosity and Permeability Zoning in an Iranian Oil Field Using Fractal Modeling. International Journal of Mining and Geo-Engineering. 55(1): 49-58. https://doi.org/10.22059/ijmge.2019.278652.594795.
[43]             Mahdizadeh, M., Afzal, P., Eftekhari, M., and Ahangari, K. (2022). Geomechanical zonation using multivariate fractal modeling in Chadormalu iron mine, Central Iran. Bulletin of Engineering Geology and the Environment. 81(1): 59. https://doi.org/10.1007/s10064-021-02558-y.
[44]             Mirzaei, M., Adib, A., Afzal, P., Rahemi, E., and Mohammadi, G. (2022). Separation of geological ore and gangues zones based on multivariate fractal modeling in Jalal Abad iron ore deposit, Central Iran. Advanced Applied Geology. 12(3): 573-588. https://doi.org/10.22055/aag.2022.39754.2272.
[45]             Yasrebi, A.B., Hezarkhani, A., and Afzal, P.  (2017). Application of Present Value-Volume (PV-V) and NPV-Cumulative Total Ore (NPV-CTO) fractal modelling for mining strategy selection. Resources Policy. 53: 384-393.
[46]             Mandelbrot, B.B. (1983). The Fractal Geometry of Nature. Henry Holt and Company. 468, https://books.google.com/books?id=0R2LkE3N7-oC
[47]             Mandelbrot, B.B. (1985). Self-Affine Fractals and Fractal Dimension. Physica Scripta. 32(4): 257. https://doi.org/10.1088/0031-8949/32/4/001
[48]             Agterberg, F. (1993). Fractal modeling of mineral deposits. in Proceedings 24th APCOM Symposium, 1993. Canadian Inst. Mining, Metallurgy, and Petroleum Engineers,
[49]             Afzal, P., Fadakar Alghalandis, Y., Khakzad, A., Moarefvand, P., and Omran, R. N. (2011). Delineation of mineralization zones in porphyry Cu deposits by fractal concentration–volume modeling. Journal of Geochemical Exploration. 108(3): 220-232. https://doi.org/10.1016/j.gexplo.2011.03.005.
[50]             Afzal, P., Yusefi, M., Mirzaie, M., Ghadiri-Sufi, E., Ghasemzadeh, S., and Daneshvar Saein, L.  (2019). Delineation of podiform-type chromite mineralization using geochemical mineralization prospectivity index and staged factor analysis in Balvard area (SE Iran). Journal of Mining and Environment. 10(3): 705-715.
[51]             Hosseini, S.A., Keshavarz Faraj Khah, N., Kianoush, P., Afzal, P., Ebrahimabadi, A. and Shirinabadi, R. (2023c). Integration of fractal modeling and correspondence analysis reconnaissance for geochemically high-potential promising areas, NE Iran. Results in Geochemistry. 11: 100026.
[52]             Carranza, E.J.M. (2011). Analysis and mapping of geochemical anomalies using logratio-transformed stream sediment data with censored values. Journal of Geochemical Exploration. 110(2): 167-185. https://doi.org/10.1016/j.gexplo.2011.05.007.
[53]             Nazarpour, A., Paydar, G.R., and Carranza, E.J.M. (2016). Stepwise regression for recognition of geochemical anomalies: Case study in Takab area, NW Iran. Journal of Geochemical Exploration. 168: 150-162. https://doi.org/10.1016/j.gexplo.2016.07.003.
[54]             Anari, R. and Ebrahimabadi, A. (2018). An Approach to Select the Optimum Rock Failure Criterion for Determining a Safe Mud Window through Wellbore Stability Analysis. Asian Journal of Water, Environment and Pollution. 15: 127-140. https://doi.org/10.3233/AJW-180025.
[55]             Nazarisaram, M. and Ebrahimabadi, A.  (2022). Geomechanical design of Shadegan oilfield in order to modeling and designing ERD wells in Bangestan formations. Journal of Petroleum Geomechanics. 5(1): 29-45.
[56]             Eaton, B.A. (1969). Fracture Gradient Prediction and Its Application in Oilfield Operations. Journal of Petroleum Technology. 21(10): 1353-1360. https://doi.org/10.2118/2163-pa.
[57]             Kianoush, P. (2023). Formation Pressure Modeling by Integration of Seismic Data and Well Information to Design Drilling Fluid. Case Study: Southern Azadegan Field. Ph.D. Dissertation, Islamic Azad University, South Tehran Branch. 325. https://doi.org/10.13140/RG.2.2.11042.20169
[58]             Du, Y., Chen, J. Cui, Y., Xin, J., Wang, J., Li, Y. Z. and Fu, X. (2016). Genetic mechanism and development of the unsteady Sarvak play of the Azadegan oil field, southwest of Iran. Petroleum Science. 13(1): 34-51. https://doi.org/10.1007/s12182-016-0077-6.
[59]             Terzaghi, K., Peck, R.B. and Mesri, G. (1996). Soil mechanics in engineering practice. 3rd Edition ed. New York: John Wiley & Sons.
[60]             Mehrkhani, F., Ebrahimabadi, A., and Alaei, M.R. (2019). Wellbore Strengthening Analysis in Single and Multi-Fracture Models Using Finite Element and Analytical Methods, Case Study: South Pars Gas Field. in 53rd U.S. Rock Mechanics/Geomechanics Symposium.
[61]             Wang, Q., Ji, S., Sun, S., and Marcotte, D.  (2009). Correlations between compressional and shear wave velocities and corresponding Poisson's ratios for some common rocks and sulfide ores. Tectonophysics. 469(1): 61-72.
[62]             Aslannezhad, M., Khaksar manshad, A., and Jalalifar, H. (2016). Determination of a safe mud window and analysis of wellbore stability to minimize drilling challenges and non-productive time. Journal of Petroleum Exploration and Production Technology. 6(3): 493-503. https://doi.org/10.1007/s13202-015-0198-2.
[63]             Le, K., and Rasouli, V. (2012). Determination of safe mud weight windows for drilling deviated wellbores: a case study in the North Perth Basin. presented at the PETROLEUM 2012 https://doi.org/10.2495/PMR120081.
[64]             Li, Q., Wang, F., Forson, K., Zhang, C.,  Zhang, J., Chen, J., Xu, N., and Wang, Y. (2022). Affecting analysis of the rheological characteristic and reservoir damage of CO2 fracturing fluid in low permeability shale reservoir. Environmental Science and Pollution Research. 29(25): 37815-37826. https://doi.org/10.1007/s11356-021-18169-9.
[65]             Lee, H., Jang, Y., Kwon, S. Park, M. H., and Mitra, G. (2018). The role of mechanical stratigraphy in the lateral variations of thrust development along the central Alberta Foothills, Canada. Geoscience Frontiers. 9(5): 1451-1464. https://doi.org/10.1016/j.gsf.2018.03.006.