[1] Cohen, B. L. (2011). The cancer risk from low level radiation. Radiation dose from multidetector CT. Springer.
[2] Council, N. R. (2006). Health risks from exposure to low levels of ionizing radiation: BEIR VII phase 2, National Academies Press.
[3] Giusti, L. (2009). A review of waste management practices and their impact on human health. Waste management, 29, 2227-2239.
[4] Gershey, E. L., Klein, R. C., Party, E. & Wilkerson, A. 1990. Low-level radioactive waste.
[5] Francis, A. (1985). Low-level radioactive wastes in subsurface soils. Soil reclamation processes: microbiological analyses and applications.
[6] Holzlöhner, U., August, H. & Meggyes, T. (1997). Advanced landfill liner systems, Thomas Telford.
[7] Gilmore, W. R. (1977). Radioactive waste disposal: low and high level.
[8] Daniel, D. E. (1983). Shallow land burial of low-level radioactive waste. Journal of Geotechnical Engineering, 109, 40-55.
[9] Abushammala, M. F., Basri, N. E. A. & Kadhum, A. A. H. (2009). Review on landfill gas emission to the atmosphere. European Journal of Scientific Research, 30, 427-436.
[10] Tian, K., Benson, C. H. & Likos, W. J. (2016). Hydraulic conductivity of geosynthetic clay liners to low-level radioactive waste leachate. Journal of Geotechnical and Geoenvironmental Engineering, 142, 04016037.
[11] Small, J., Nykyri, M., Helin, M., Hovi, U., Sarlin, T. & Itävaara, M. (2008). Experimental and modelling investigations of the biogeochemistry of gas production from low and intermediate level radioactive waste. Applied Geochemistry, 23, 1383-1418.
[12] Alther, G. (2004). Some practical observations on the use of bentonite. Environmental & Engineering Geoscience, 10, 347-359.
[13] Kumar, S. & Yong, W.-L. (2002). Effect of bentonite on compacted clay landfill barriers. Soil and sediment contamination, 11, 71-89.
[14] Fall, M., Célestin, J. & Han, F. (2009). Suitability of bentonite-paste tailings mixtures as engineering barrier material for mine waste containment facilities. Minerals Engineering, 22, 840-848.
[15] Lee, S. & Tank, R. (1985). Role of clays in the disposal of nuclear waste: a review. Applied clay science, 1, 145-162.
[16] Sellin, P. & Leupin, O. X. (2013). The use of clay as an engineered barrier in radioactive-waste management–a review. Clays and Clay Minerals, 61, 477-498.
[17] Olukotun, S., Gbenu, S., Ibitoye, F., Oladejo, O., Shittu, H., Fasasi, M. & Balogun, F. (2018). Investigation of gamma radiation shielding capability of two clay materials. Nuclear Engineering and Technology, 50, 957-962.
[18] Singh, V. P., Badiger, N. & Kucuk, N. (2014). Gamma-ray and neutron shielding properties of some soil samples.
[19] Akbulut, S., Sehhatigdiri, A., Eroglu, H. & Çelik, S. (2015). A research on the radiation shielding effects of clay, silica fume and cement samples. Radiation Physics and Chemistry, 117, 88-92.
[20] Mann, H. S., Brar, G. S., Mann, K. S. & Mudahar, G. S. (2016). Experimental investigation of clay fly ash bricks for gamma-ray shielding. Nuclear Engineering and Technology, 48, 1230-1236.
[21] Hager, I. Z., Rammah, Y. S., Othman, H. A., Ibrahim, E. M., Hassan, S. F. & Sallam, F. H. (2019). Nano-structured natural bentonite clay coated by polyvinyl alcohol polymer for gamma rays attenuation. Journal of Theoretical and Applied Physics, 13, 141-153.
[22] Hendronursito, Y., Barus, J., Amin, M., Al Muttaqii, M., Rajagukguk, T. O., Isnugroho, K., & Birawidha, D. C. (2019). The local mineral potential from East Lampung-Indonesia: the use of basalt rock as a stone meal for cassava plant. Journal of Degraded and Mining Lands Management, 7(1), 1977.
[23] Isfahani, H. S., & Azhari, A. (2021). Investigating the effect of basalt fiber additive on the performance of clay barriers for radioactive waste disposals. Bulletin of Engineering Geology and the Environment, 80(3), 2461-2472.
[24] Dole, L. R. & Quapp, W. (2002). Radiation shielding using depleted uranium oxide in nonmetallic matrices. ORNL/TM-2002/111, Oak Ridge National Laboratory, UT-Battelle, LLC, Oak Ridge, Tennessee (August 2002).
[25] Li, R., Gu, Y., Zhang, G., Yang, Z., Li, M. & Zhang, Z. (2017). Radiation shielding property of structural polymer composite: continuous basalt fiber reinforced epoxy matrix composite containing erbium oxide. Composites Science and Technology, 143, 67-74.
[26] Thyagaraj, T. & Soujanya, D. (2017). Polypropylene fiber reinforced bentonite for waste containment barriers. Applied Clay Science, 142, 153-162.
[27] Kalkan, E. (2013). Preparation of scrap tire rubber fiber–silica fume mixtures for modification of clayey soils. Applied Clay Science, 80, 117-125.
[28] Ayothiraman, R. & Singh (2017). A. Improvement of soil properties by basalt fibre reinforcement. Proc., DFI-PFSF Joint Conf. on Piled Foundations & Ground Improvement Technology for the Modern Building and Infrastructure Sector, 403-412.
[29] Moon, S., Nam, K., Kim, J. Y., Hwan, S. K. & Chung, M. (2008). Effectiveness of compacted soil liner as a gas barrier layer in the landfill final cover system. Waste management, 28, 1909-1914.
[30] Juca, J. & Maciel, F. (2006). Gas permeability of a compacted soil used in a landfill cover layer. Unsaturated Soils..
[31] Bergaya, F. & Lagaly, G. (2006). General introduction: clays, clay minerals, and clay science. Developments in clay science, 1, 1-18.
[32] Sim, J. & Park, C. (2005). Characteristics of basalt fiber as a strengthening material for concrete structures. Composites Part B: Engineering, 36, 504-512.
[33] Lipatov, Y. V., Gutnikov, S., Manylov, M., Zhukovskaya, E. & Lazoryak, B. (2015). High alkali-resistant basalt fiber for reinforcing concrete. Materials & Design, 73, 60-66.
[34] Li, W. & Xu, J. (2009). Mechanical properties of basalt fiber reinforced geopolymeric concrete under impact loading. Materials Science and Engineering: A, 505, 178-186.
[35] Matthys, S., Toutanji, H., Audenaert, K. & Taerwe, L. (2005). Axial load behavior of large-scale columns confined with fiber-reinforced polymer composites. ACI Structural Journal, 102, 258.
[36] Lv, Y., Wu, X., Zhu, Y., Liang, X., Cheng, Q. & Gao, M. (2018). Compression Behavior of Basalt Fiber-Reinforced Polymer Tube-Confined Coconut Fiber-Reinforced Concrete. Advances in Materials Science and Engineering,.
[37] Shafiq, N., Ayub, T. & Khan, S. U. (2016). Investigating the performance of PVA and basalt fibre reinforced beams subjected to flexural action. Composite structures, 153, 30-41.
[38] Kramár, S., Trcala, M., Chitbanyong, K., Král, P. & Puangsin, B. (2020). Basalt-Fiber-Reinforced Polyvinyl Acetate Resin: A Coating for Ductile Plywood Panels. Materials, 13, 49.
[39] Martin, J. E. (2006). Physics for radiation protection: a handbook, John Wiley & Sons.
[40] Briesmeister, J. F. (1986). MCNP: a general Monte Carlo code for neutron and photon transport. Version 3A. Revision 2. Los Alamos National Lab.
[41] Jaeger, R. (1975). Engineering Compendium on Radiation Shielding, Vol. II, Shielding Materials, S. 9.1. 12.4. Springer-Verlag, Berlin, Heidelberg, New York.
[42] Berger, M., Hubbell, J., Seltzer, S., Chang, J., Coursey, J., Sukumar, R., Zucker, D. & Olsen, K. (2016). XCOM: Photon cross sections database, 2010.
URL http://www.nist. gov/pml/data/xcom.
[43] Krane, K. & Halliday, D. (1988). Introductory Nuclear Physics, Wi ley. New York, 169.