طراحی احتمالاتی محدوده نهایی روباز با سطوح مختلف ریسک‌پذیری مدیریتی در شرایط عدم قطعیت عیار و قیمت ماده معدنی (مطالعه موردی: معدن مس عینک افغانستان)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی معدن و متالورژی، دانشگاه یزد، یزد، ایران

2 گروه مهندسی استخراج معادن، دانشکده زمین‌شناسی، دانشگاه بامیان، بامیان، افغانستان

چکیده

محدوده نهایی معدن در حقیقت موقعیت، اندازه، شکل و عمق آن را در پایان عمر بهره‌برداری، نشان می‌دهد. هرچند در اغلب تحقیق‌های علمی، محدود‌ی نهایی معادن با فرض ثابت بودن پارامترهای طراحی انجام می‌شود، اما وجود عدم قطعیت‌های طراحی به انحراف شدید نتایج مورد انتظار طراحی و نتایج اجرا در زمان استخراج معدن منجر می‌شود. از مهم‌ترین عدم قطعیت‌های موجود در معدنکاری عیار ماده معدنی و قیمت محصول نهایی معدن بوده که در نظرگیری تأثیر این عدم قطعیت‌ها در طراحی محدوده نهایی معدن منجر به درک مناسب‌تری از احتمال دستیابی به اهداف مختلف استخراج خواهد شد. در این تحقیق به بررسی طراحی نهایی معدن مس عینک افغانستان با فرض وجود عدم قطعیت هم‌زمان عیار و قیمت ماده معدنی پرداخته‌شده است. با استفاده از داده‌های اکتشافی نحوه توزیع عیار ماده معدنی در بلوک‌های مختلف تعیین‌شده و در ادامه قیمت مس معدن با داده‌های تاریخی محاسبه‌شده و برای آن یک تابع توزیع لاگنرمال فرض شده است. با در نظرگیری توزیع عیار و قیمت محصول نهایی معدن، 9 عدد پیت مختلف طراحی شدند. در هرکدام از این پیت‌ها قیمت و عیار به‌صورت خوش‌بینانه، منطقی و بدبینانه فرض شده است. در ادامه با استفاده از تحلیل قابلیت اعتماد مرتبه اول (FORM) و فرض یک هدف سوددهی برای هرکدام از پیت‌های معدنی احتمال موفقیت و یا شکست پیت موردبحث در دستیابی به اهداف مدیریتی محاسبه شد. نتایج این تحقیق نشان می‌دهد که هرچند پیت منطقی دارای سود انتظاری 28 میلیارد دلار است اما برای نمونه دستیابی به سود حداقل 10 میلیارد دلار برای یک مدیر ریسک گریز با استفاده از پیت قیمت بدبینانه و عیار منطقی دارای بیشترین احتمال موفقیت به‌اندازه 8/91 درصد است. ضمن اینکه برای یک مدیر ریسک‌پذیر دستیابی به هدف سود حداقل 40 میلیارد دلار با استفاده از پیت خوش‌بینانه قیمت و منطقی عیار دارای بیشترین احتمال موفقیت به‌اندازه 34/31 درصد است. نتایج این تحقیق نشان می‌دهد که برای مدیران با سطوح مختلف ریسک‌پذیری باید محدوده‌های نهایی متفاوتی بنا بر میزان احتمال موفقیت در دستیابی به اهداف مدیریتی پیشنهاد داد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Probabilistic Pit Limit Design with Different Levels of Managerial Risk Tolerance, Considering the Uncertainty of Ore Grade and Final Product Price (Case Study: Afghanistan’s Ainak Copper Mine)

نویسندگان [English]

  • Yousef Mirzaeian 1
  • Javad Golamnejad 1
  • Abbas Agah 2
1 Dept. of Mining and Metallurgy Engineering, Yazd University, Yazd, Iran
2 Dept. of Mining Engineering, Faculty of Geology, Bamyan University, Bamyan, Afghanistan
چکیده [English]

The ultimate pit limit actually shows pit location, size, shape, and depth at the end of its working life. Although most scientific research determines the final pit limit by assuming constant design parameters, the existence of design uncertainties leads to significant deviations between expected design results and actual implementation during mining. Two of the most important uncertainties in mining are the grade of the mineral and the price of the final product, which, considering the effect of these uncertainties in the design of the final pit limit, will lead to a more appropriate understanding of the probability of achieving various mining goals. In this research, the pit limit of the Ainak copper mine in Afghanistan has been investigated, assuming the simultaneous uncertainty of the product price and ore grade. by using the exploration data, the distribution of the grade of the ore mineral in different blocks has been determined, and then the historical copper price is investigated, and a lognormal distribution function has been assumed for it. Taking into consideration the price and grade distributions, 9 different pits were designed. In each of these pits, the copper price and mine blocks' ore grades have been assumed optimistically, logically, and pessimistically based on their probability distribution function. Then, by using the First-Order Reliability Method (FORM) and assuming a profit goal for mine pits, the success or failure probability of each designed pit in achieving management objectives was calculated. The results of this research show that although the logical pit has an expected profit of 28 billion dollars, for example, for achieving a profit of 10 billion dollars for a risk-averse manager, using the pessimistic price-logical grade pit (pit number 2) has the highest success probability (91.8 percent). In addition, for a risk-taking manager, reaching the profit goal of 40 billion dollars using the optimistic price-logical grade pit (pit no. 8) has the highest success probability (31.34 percent). The results show that, for different managerial risk tolerances, it is needed to design different final pit limits based on the highest probability of success in managerial goals, and a specific design is not sufficient for different managers.

کلیدواژه‌ها [English]

  • Ultimate pit limit
  • Ore grade uncertainty
  • Price uncertainty
  • Ainak copper mine
  • First order reliability Method (FORM)
  • managerial risk tolerance
  • probabilistic analysis
[1]               Shafayi, S.H., Ore Deposit Boundary determination and Reserve Estimation of Afghanistan Aynak Copper Deposit using Geostatistical Methods (in persian) 2021, Yazd University.
[2]               Shafayi, S.H. and F.M. Torab, Ore Deposit Boundary Modification in Afghanistan Aynak Central Copper Deposit using Sequential Indicator Simulation and Indicator Kriging. Journal of Mining and Environment, 2022. 13(2): p. 325-340.
[3]               Gholamnejad J., Long-term production planning in open pit mines considering geological uncertainty (in persian). 2009. Yazd University.
[4]               Osanloo, M., J. Gholamnejad, and B. Karimi, Long-term open pit mine production planning: a review of models and algorithms. International Journal of Mining, Reclamation and Environment, 2008. 22(1): p. 3-35. [5]   
[5]               Denby, B. and D. Schofield, Open-pit design and scheduling by use of genetic algorithms. Transactions of the Institution of Mining and Metallurgy. Section A. Mining Industry, 1994. 103.
[6]               Gholamnejad, J. and M. Osanloo, Incorporation of ore grade uncertainty into the push back design process. Journal of the Southern African Institute of Mining and Metallurgy, 2007. 107(3): p. 177-185.
[7]               Abdel Sabour, S.A., Dimitrakopoulos, R. G., & Kumral, M., Mine design selection under uncertainty. . Mining Technology, (2008). 117(2), 53-64.
[8]               Akbari, A., M. Osanloo, and M. Shirazi, Ultimate Pit Limit (UPL) determination through minimizing risk costs associated with price uncertainty. Gospodarka Surowcami Mineralnymi, 2008. 24(4/2): p. 157-170.
[9]                Godoy, M. and R. Dimitrakopoulos, A risk quantification framework for strategic mine planning: Method and application. Journal of Mining Science, 2011. 47: p. 235-246.
[10]            Asad, M.W.A. and R. Dimitrakopoulos, Implementing a parametric maximum flow algorithm for optimal open pit mine design under uncertain supply and demand. Journal of the Operational Research Society, 2013. 64(2): p. 185-197.
[11]            Mahdi, R. and O. Morteza. Determining the most effective factors on open pit mine plans and their interactions. in Mine Planning and Equipment Selection: Proceedings of the 22nd MPES Conference, Dresden, Germany, 14th–19th October 2013. 2014. Springer.
[12]           Deutsch, M., E. González, and M. Williams, Using simulation to quantify. Mining Engineering, 2015. 67(12): p. 49-55.
[13]           Baek, J., Y. Choi, and H.-s. Park, Uncertainty representation method for open pit optimization results due to variation in mineral prices. Minerals, 2016. 6(1): p. 17.
[14]           Dimitrakopoulos, R., Stochastic mine planning—methods, examples and value in an uncertain world. Advances in Applied Strategic Mine Planning, 2018: p. 101-115.
[15]           Jelvez, E., N. Morales, and J.M. Ortiz, Stochastic Final Pit Limits: An Efficient Frontier Analysis under Geological Uncertainty in the Open-Pit Mining Industry. Mathematics, 2022. 10(1): p. 100.
[16]             Gholamnejad, Javad, et al. Designing the most probable final pit limit of open pit mines considering price uncertainty. Journal of Analytical and Numerical Methods in Mining Engineering, 2022, 12.32: 77-86. (in Persian)
[17]           Jelvez, E., et al., A Multi-Stage Methodology for Long-Term Open-Pit Mine Production Planning under Ore Grade Uncertainty. Mathematics, 2023. 11(18): p. 3907
[18]           Azizi, M., H. Saibi, and G. Cooper, Mineral and structural mapping of the Aynak-Logar Valley (eastern Afghanistan) from hyperspectral remote sensing data and aeromagnetic data. Arabian Journal of Geosciences, 2015. 8: p. 10911-10918.
[19]           Phoon, K.-K.E., Reliability-Based Design in Geotechnical Engineering: Computations and Applications (1st ed.). (2008): CRC Press.
[20]            Hasofer, A.M. and N.C. Lind, An Exact and Invariant First-order Reliability Format. 1973: Solid Mechanics Division, University of Waterloo.
[21]            Phoon, K.K., Reliability-Based Design in Geotechnical Engineering: Computations and Applications. 2008: Taylor & Francis.
[22]            R. Lotfian, J. Gholamnejad, and ..., “Effective solution of the long-term open pit production planning problem using block clustering,” Engineering Optimization, vol. 53, no. 7, pp. 1119–1134, 2021.
[23]           .S. Rostamian and M. Ataee-pour, “Ultimate Pit Limit Optimization Using Keshtel Algorithm,” Journal of Mineral Resources Engineering, vol. 8, no. 4, pp. 79–102, 2023.
[24]           .K. Fathollahzadeh, M. W. A. Asad, and ..., “Review of solution methodologies for open pit mine production scheduling problem,” International Journal of Mining, Reclamation and Environment, 2021.
[25]           X. Wei, Z. Yao, Z. Zhang, and C. Jiang, “First-order reliability method to problems involving multimodal distributions,” Structural and Multidisciplinary Optimization, vol. 66, no. 6, p. 143, 2023.
[26]           A. Dudzik and B. Potrzeszcz-Sut, “Hybrid approach to the first order reliability method in the reliability analysis of a spatial structure,” Applied Sciences. 11.2 (2021).