[1] Hoek, E., & Brown, E. T. (1980). Empirical strength criterion for rock masses. Journal of the geotechnical engineering division. 106(9): 1013-1035.
[2] Rafiei Renani, H., & Cai, M. (2022). Forty-year review of the Hoek–Brown failure criterion for jointed rock masses. Rock mechanics and rock engineering. 55(1): 439-461.
[3] Wyllie, D. C., & Mah, C. (2017). Rock slope engineering. CRC Press.
[4] Delaney, R. K., Shakoor, A., & Watts, C. F. (2020). Evaluating the use of unmanned aerial systems (UAS) for collecting discontinuity orientation data for rock slope stability analysis. Environmental & Engineering Geoscience. 26(4): 427-447.
[5] Wang, Y., Zhou, J., Chen, Q., Chen, J., Zhu, C., & Li, H. (2024). Automatic interpretation of geometric information of discontinuities and its influence on the stability of highly-jointed rock slopes. Journal of Rock Mechanics and Geotechnical Engineering.
[6] Waldron, J., & Snyder, M. (2020). Geological Structures: A practical introduction.
[7] Lee, C.-Y., & Wang, I.-T. (2011). Analysis of highway slope failure by an application of the stereographic projection. International Journal of Geological and Environmental Engineering. 5(3): 122-129.
[8] To, P., & Sivakugan, N. (2023). Analytical solution for rock discontinuity prediction without stereonet. Geotechnical and Geological Engineering. 41(7): 4311-4320.
[9] Lisle, R. J., & Leyshon, P. R. (2004). Stereographic projection techniques for geologists and civil engineers. Cambridge University Press.
[10] Qu, H., Pan, M., Ming, J., Wu, Z., & Sun, Z. (2008). An efficient method for high-precision 3D geological modeling from intersected folded cross-sections. Acta Scientiarum Naturalium Universitatis Pekinensis. 44(6): 915-920.
[11] Abdollahipour, A., & Mansouri, H. (2013). SETDISC a Software for Joint Classification Based on Poisson Clustering. Journal of Analytical and Numerical Methods in Mining Engineering. 2(4): 11-19 (In Persian).
[12] Jalali, Z., & Mousavi Nasab, S. M. (2015). Modification of rock mass rating classification system by k-means and fuzzy c-means clustering algorithms. Journal of Analytical and Numerical Methods in Mining Engineering. 5(9): 73-84 (In Persian).
[13] Nikadat, N., & Yarahmadi Bafghi, A. (2014). Estimating Joint Normal and Shear Stiffness Coefficient Using Statistical Methods. Journal of Analytical and Numerical Methods in Mining Engineering. 3(6): 93-103 (In Persian).
[14] Liu, Y., Chen, J., Tan, C., Zhan, J., Song, S., Xu, W., Yan, J., Zhang, Y., Zhao, M., & Wang, Q. (2022). Intelligent scanning for optimal rock discontinuity sets considering multiple parameters based on manifold learning combined with UAV photogrammetry. Engineering Geology. 309: 106851.
[15] Farmakis, I., DiFrancesco, P.-M., Hutchinson, D. J., & Vlachopoulos, N. (2022). Rockfall detection using LiDAR and deep learning. Engineering Geology. 309: 106836.
[16] Chen, Q., Ge, Y., & Tang, H. (2024). Rock discontinuities characterization from large-scale point clouds using a point-based deep learning method. Engineering Geology. 337: 107585.
[17] Zangana, H. M., & Abdulazeez, A. M. (2023). Developed Clustering Algorithms for Engineering Applications: A Review. International Journal of Informatics, Information System and Computer Engineering (INJIISCOM). 4(2): 147-169.
[18] Bouveyron, C., Hammer, B., & Villmann, T. (2012). Recent developments in clustering algorithms. ESANN,
[19] Alasalı, T., & Ortakcı, Y. (2024). Clustering Techniques in Data Mining: A Survey of Methods, Challenges, and Applications. Computer Science. 9(1): 32-50.
[20] Han, J., Pei, J., & Tong, H. (2022). Data mining: concepts and techniques. Morgan kaufmann.
[21] Zaremotlagh, S., Hezarkhani, A., & Sadeghi, M. (2016). Detecting homogenous clusters using whole-rock chemical compositions and REE patterns: A graph-based geochemical approach. Journal of Geochemical Exploration. 170: 94-106.
[22] Michalak, M., Turoboś, F., & Gladki, P. (2022). Explainable Clustering Models for Structural Geology Measurements. AGU Fall Meeting Abstracts,
[23] Tokhmechi, B., Memarian, H., Moshiri, B., Rasouli, V., & Noubari, H. A. (2011). Investigating the validity of conventional joint set clustering methods. Engineering Geology. 118(3-4): 75-81.
[24] Yang, X., Li, S., Liang, K., Nie, F., & Lin, L. (2022). Structured graph optimization for joint spectral embedding and clustering. Neurocomputing. 503: 62-72.
[25] Shang, X., Li, X., Morales-Esteban, A., Dong, L., & Peng, K. (2017). K‐Means Cluster for Seismicity Partitioning and Geological Structure Interpretation, with Application to the Yongshaba Mine (China). Shock and Vibration. 2017(1): 5913041.
[26] Caumon, G., Collon-Drouaillet, P., Le Carlier de Veslud, C., Viseur, S., & Sausse, J. (2009). Surface-based 3D modeling of geological structures. Mathematical geosciences. 41: 927-945.
[27] Zhao, Y., Li, A., Du, Z., Chen, Y., Sun, H., & Zhi, Z. (2024). Joint Structure Detection and Multi-Scale Clustering Filtering for Tunnel Lining Extraction From Point Clouds. IEEE Transactions on Intelligent Transportation Systems.
[28] Ma, Y., Lin, H., Wang, Y., Huang, H., & He, X. (2021). A multi-stage hierarchical clustering algorithm based on centroid of tree and cut edge constraint. Information Sciences. 557: 194-219.
[29] Fazli, M., Bertram, R., & Striegel, D. A. (2024). Multi-layer Bundling as a New Approach for Determining Multi-scale Correlations Within a High-Dimensional Dataset. Bulletin of Mathematical Biology. 86(9): 105.
[30] Chen, S., Zhang, F., Zhang, Z., Yu, S., Qiu, A., Liu, S., & Zhao, X. (2023). Multi-Scale Massive Points Fast Clustering Based on Hierarchical Density Spanning Tree. ISPRS International Journal of Geo-Information. 12(1): 24.
[31] Wang, J., Wu, B., Ren, Z., Zhang, H., & Zhou, Y. (2023). Multi-scale deep multi-view subspace clustering with self-weighting fusion and structure preserving. Expert Systems with Applications. 213: 119031.
[32] Murtagh, F., & Contreras, P. (2012). Algorithms for hierarchical clustering: an overview. Wiley interdisciplinary reviews: data mining and knowledge discovery. 2(1): 86-97.
[33] Gupta, A., Sharma, H., & Akhtar, A. (2021). A comparative analysis of k-means and hierarchical clustering. EPRA International Journal of Multidisciplinary Research (IJMR). 7(8).
[34] Abdulhafedh, A. (2021). Incorporating k-means, hierarchical clustering and pca in customer segmentation. Journal of City and Development. 3(1): 12-30.
[35] Liu, Y., & Li, B. (2020). Bayesian hierarchical K-means clustering. Intelligent Data Analysis. 24(5): 977-992.
[36] Karthikeyan, B., George, D. J., Manikandan, G., & Thomas, T. (2020). A comparative study on k-means clustering and agglomerative hierarchical clustering. International Journal of Emerging Trends in Engineering Research. 8(5).
[37] Govender, P., & Sivakumar, V. (2020). Application of k-means and hierarchical clustering techniques for analysis of air pollution: A review (1980–2019). Atmospheric pollution research. 11(1): 40-56.
[38] Dulanjalee, P., & Gunathilake, J. (2017). Rock Slope Stability Assessment Using Stereographic Projection Method and Limit Equilibrium Analysis. Advancing Culture of Living with Landslides: Volume 4 Diversity of Landslide Forms,
[39] Kıncal, C. (2014). Application of two new stereographic projection techniques to slope stability problems. International Journal of Rock Mechanics and Mining Sciences. 66: 136-150.
[40] Dershowitz, W., & Einstein, H. (1988). Characterizing rock joint geometry with joint system models. Rock mechanics and rock engineering. 21(1): 21-51.
[41] Biabangard, H., Fatameian, M., Moridi Farimani, A., & Bakhshi Mohabi, M. (2017). Petrography, geochemistry and tectono-magmatic setting of the dykes of the north and the west of Zahedan (Southeast Iran). Petrology. 8(31): 147-164 (In Persian).
[42] Ghasemi, H., Sadeghian, M., Kord, M., & Khanalizadeh, A. (2010). The evolution mechanism’s of Zahedan granitoidic batholith, southeast Iran [Research]. Iranian Journal of Crystallography and Mineralogy. 17(4): 551-578 (In Persian).
[43] Sadeghian, M., & Valizadeh, M. V. (2008). Emplacement Mechanism of Zahedan Granitoidic Pluton with the Aid of AMS Method. Scientific Quarterly Journal of Geosciences. 17(66): 134-159 (In Persian).
[44] Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern recognition letters. 31(8): 651-666.
[45] Blömer, J., Lammersen, C., Schmidt, M., & Sohler, C. (2016). Theoretical analysis of the k-means algorithm–a survey. Algorithm Engineering: Selected Results and Surveys: 81-116.
[46] Zhou, J.-w., Chen, J.-l., & Li, H.-b. (2024). An optimized fuzzy K-means clustering method for automated rock discontinuities extraction from point clouds. International Journal of Rock Mechanics and Mining Sciences. 173: 105627.
[47] Tang, N., Wang, L., Jiang, H., Huang, X., Tan, G., & Zhou, X. (2023). A new clustering method of rock discontinuity sets based on modified K-means algorithm. Bulletin of Engineering Geology and the Environment. 82(11): 415.
[48] Clero, K., Ed-Diny, S., Achalhi, M., Cherkaoui, M., Benzakour, I., Soror, T., Rziki, S., El Fkihi, S., Nadour, M., & Tagemouati, H. (2024). Rock mass joint set identification at Draa Sfar mine in Morocco through stereographic projection and K-means clustering. Mediterranean Geoscience Reviews. 6(1): 49-56.
[49] Burkardt, J. (2009). K-means clustering. Virginia Tech, Advanced Research Computing, Interdisciplinary Center for Applied Mathematics.
[50] Suhui, W., Ying, C., Yanning, Z., & Yuntao, P. (2011). Survey on K-means Algorithm. Data Analysis and Knowledge Discovery. 27(5): 28-35.
[51] Muthén, B. O. (1989). Latent variable modeling in heterogeneous populations. Psychometrika. 54: 557-585.
[52] Muthén, B. O. (1994). Multilevel covariance structure analysis. Sociological methods & research. 22(3): 376-398.
[53] Hoff, P. D. (2009). A hierarchical eigenmodel for pooled covariance estimation. Journal of the Royal Statistical Society Series B: Statistical Methodology. 71(5): 971-992.
[54] Miyamoto, S. (2022). Theory of agglomerative hierarchical clustering (Vol. 15). Springer.
[55] Bouguettaya, A., Yu, Q., Liu, X., Zhou, X., & Song, A. (2015). Efficient agglomerative hierarchical clustering. Expert Systems with Applications. 42(5): 2785-2797.
[56] Davidson, I., & Ravi, S. (2005). Agglomerative hierarchical clustering with constraints: Theoretical and empirical results. European Conference on Principles of Data Mining and Knowledge Discovery,
[57] Bejari, H., Daya, A., & Roudini, A. (2017). Selection of chromite processing plant site using fuzzy analytic hierarchy process (FAHP). Journal of Mining and Environment. 8(2): 155-162.
[58] Ahmadi Khounsaraki, V., Uromeihy, A., Amiri, M., & Nikudel, M. (2024). Angouran mine access tunnel stability assessment using the experimental classification method and fuzzy hierarchical analysis (FAHP). New Findings in Applied Geology. 18(35): 47-66 (In Persian).
[59] Bagloo, H., & Ataee-pour, M. (2024). A Classification Model of Dimensional Stones Using AHP and Fuzzy Logic. Geotechnical and Geological Engineering. 42(2): 1173-1187.
[60] Ghanbarpour, A., Zaremotlagh, S., & Dabaghi-Zarandi, F. (2024). Addressing Dependent Data in Constrained Optimization Problems: A WOA-based Algorithm. International Journal of Industrial Electronics Control and Optimization. 7(2): 119-127.
[61] Yuan, Y.-l., Hu, C.-m., Li, L., Xu, J., & Hou, X.-h. (2024). Efficient slope reliability analysis using a surrogate-assisted normal search particle swarm optimization algorithm. Journal of Computational Design and Engineering. 11(1): 173-194.
[62] Li, P., Chen, T., Liu, Y., Cai, M., Sun, L., Wang, P., Wang, Y., & Zhang, X. (2025). Automatic Identification of Rock Discontinuity Sets by a Fuzzy C-Means Clustering Method Based on Artificial Bee Colony Algorithm. Applied Sciences. 15(3): 1497.