تأثیر گام زمانی بر دقت نتایج در شبیه‌سازی حرکت ذرات به روش اجزای گسسته (راگ)

نوع مقاله : مقاله پژوهشی

نویسندگان

چکیده

روش اجزای گسسته (راگ) جهت شبیه‌سازی حرکت ذرات در سیستم‌های فرآوری کاربرد وسیعی دارد. اساس این روش محاسبه نیروهای متقابل میان ذرات در هر برخورد و مدل کردن موقعیت جدید ذرات است. تعداد زیاد اجزا و روابط متعدد، باعث طولانی شدن زمان انجام محاسبات در راگ می‌شود. زمان لازم برای محاسبات بستگی زیادی به گام زمانی انتخاب‌شده برای شبیه‌سازی دارد. اگر گام زمانی کوچک در نظر گرفته شود، حجم محاسبات و به دنبال آن زمان لازم جهت شبیه‌سازی افزایش می‌یابد. از طرف دیگر، در صورتی که گام زمانی بزرگ در نظر گرفته شود، شبیه‌سازی به دلیل عدم توجه لازم به فرآیند برخورد، با خطا همراه خواهد بود. در راگ گام زمانی به صورت ضریبی از زمان تماس دو ذره در یک برخورد، در نظر گرفته می‌شود. هدف این پژوهش ارائه‌ی رابطه‌ای برای تعیین گام زمانی شبیه‌سازی با توجه به شرایط عملیاتی و میزان خطای شبیه‌سازی بود. برای این کار ابتدا رابطه‌ی بین ضریب زمان تماس و خطای شبیه‌سازی ارائه شد و روابط معمول زمان تماس اصلاح گردید. نتایج نشان دادند که گام زمانی لازم جهت شبیه‌سازی با خطای 5% برای ذراتی به شعاع 3 سانتیمتر، مدول الاستیسیته‌ی 210 گیگا پاسکال با سرعت نسبی برخورد 5/0 متر بر ثانیه، با استفاده از مدل نیروی برخورد هرتز- میندلین 3/2 میکروثانیه است که تقریباً 12 برابر بیشتر از مدل خطی است. به منظور سرعت بخشیدن به محاسبات که با بزرگ مقیاس کردن اندازه‌ی ذرات حاصل می‌شود، مشخص گردید که با افزایش شعاع ذرات به 1 متر، گام زمانی لازم برای شبیه‌سازی، 33 برابر افزایش می‌یابد. کاهش مدول الاستیسیته به مقدار 1/2 مگاپاسکال باعث افزایش 316 برابری گام زمانی در مدل خطی و 100 برابری در مدل هرتز- میندلین گردید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Time Step in Accuracy of Particle Movement Prediction using Discrete Element Method (DEM)

نویسندگان [English]

  • A Ghasemi
  • S.O Mousavi
  • S Banisi
چکیده [English]

Discrete Element Method (DEM) is extensively used to simulate the behavior of particles in various processing units. This method is based on modeling the forces acting between particles in any contact and consequently calculating the new position of particles. The high number of elements and numerous equations is very time-consuming even when using computers with very fast processors. The required computation time mainly depends on the time step. If the time step is chosen very short, the computation time will significantly increase. On the other hand, if the time step is chosen very long, the simulation will be Inaccurate due to not fully observing the contacts. In DEM calculations, the time step is chosen as a fraction of the collision time. In this research, a relationship was proposed between the contact time fraction and the error of simulation. In other words, to select the time step in addition to physical parameters, the accuracy of the simulation was also accommodated in the frequently-used relationships. The required time steps to achieve the simulation error of 5% were calculated for two common contact-force models namely, Hertz-Mindlin and linear spring-dashpot. The simulation was performed for two particles with radius of 3 cm, Elasticity modulus of 210 GPa, Poisson's ratio of 0.3 and relative velocity of 0.5 m/s. The required time steps were found to be 2.3 and 0.19 µs for the Hertz-Mindlin and linear spring-dashpot contact-force models, respectively. Results showed that with a scale-downing the modulus from 210 GPa to 2.1 MPa, the required time steps for the Hertz-Mindlin and linear spring-dashpot contact force models, with equal simulation error, increased by 100 and 316 times, respectively.

کلیدواژه‌ها [English]

  • Time step
  • DEM
  • Simulation Error
  • Contact models
  • Computation time
[1] P. W. Cleary, and M. Sinnott, “Analysis of Stirred Mill Performance Using DEM Simulation: Part 2 – Coherent Flow Structures, Liner Stress and Wear, Mixing and Transport,” Minerals Engineering, vol. 19, p. 1551–1572, 2006.
[2] M. Sinnott, and P. W. Cleary, “Analysis of Stirred Mill Performance Using DEM Simulation: Part 1 – Media Motion, Energy Consumption and Collisional Environment,” Minerals Engineering, vol. 19, p. 1537–1550, 2006.
[3] P. W. Cleary, “Ball Motion, Axial Segregation and Power Consumption in a Full Scale Two Chamber Cement Mill,” Minerals Engineering, vol. 22, p. 809–820, 2009.
[4] R. D. Morrison, and P. W. Cleary, “Using DEM to Compare the Energy Efficiency of Pilot Scale Ball and Tower Mills,” Minerals Engineering, vol. 22, p. 665–672, 2009.
[5] M. S. Powell, N. S. Weerasekara, S. Cole, R. D. LaRoche, and J. Favier, “DEM Modelling of Liner Evolution and its Influence on Grinding Rate in Ball Mills,” Minerals Engineering, vol. 24, p. 341-351, 2011.
[6] C. Pérez-Alonso, J. A. Delgadillo, “Experimental Validation of 2D DEM Code by Digital Image Analysis in Tumbling Mills,” Minerals Engineering, vol. 25, p. 20-27, 2012.
[7] P. A. Cundall, “A Discrete Numerical Model for Granular Assemblies,” Geotechnique, vol. 29, p. 47-65, 1979.
[8] P. Gy, “Sampling of Particulate Materials: Theory and Practice,” Elsevier, 1979.
[9] F. D. A. DiRenzo, “Comparison of contact-force models for the simulation of collisions in dem-based granular flow codes.,” Chemical Engineering Science, vol. 59, p. 16, 2004.
[10]I. C. Group. "Online Manual of PFC3D  Particle Flow Code in Three Dimensions."
[11] O. R. Walton, "Numerical Simulation of Inelastic, Frictional Particle Particle Interaction," Particulate Two-Phase Flow, M. C. Roco, ed., p. 884, 1992.
[12] D. Solutions, EDEM 2.4 User Guide, 2011.
[13] M. A. R. Valle, “Numerical Modeling of Granular in Rotary Kilns,” Delft University of Technology, 2012.
[14] B. K. Mishra and R. K. Rajamani, "The Discrete Element Method for the Simulation of Ball Mills," Applied Mathematical Modelling, vol. 16, p. 598-604, 1991.
[15] P. W. Cleary, “Predicting Charge Motion, Power Draw, Segregation and Wear in Ball Mills Using Discrete Element Methods,” Minerals Engineering, vol. 11, p. 1061-108, 1998.
[16] N. Djordjevic, R. Morrison, and B. Loveday, “Modelling Comminution Patterns Within a Pilot Scale AG/SAG Mill,” Minerals Engineering, vol. 19, p. 1505–1516, 2006.
[17] H. Dong, and M. H. Moys, Measurement of Impact Behaviour between Balls and Walls in Grinding Mills, Minerals Engineering, vol. 16, p. 543–550, 2003.
[18] R. D. Morrison, and P. W. Cleary, “Using DEM to Model Ore Breakage within a Pilot Scale SAG Mill,” Minerals Engineering, vol. 17, p. 1117–1124, 2004.
[19] M. Rezaeizadeh, M. Fooladi, M. S. Powell, and S. H. Mansouri, “Experimental Observations of Lifter Parameters and Mill Operation on Power Draw and Liner Impact Loading,” Minerals Engineering, vol. 23, p. 1182-1191, 2010.
[20] M. Rezaeizadeh, M. Fooladi, M. S. Powell, S. H. Mansouri, and N. S. Weerasekara, “A New Predictive Model of Lifter Bar Wear in Mills,” Minerals Engineering, vol. 23, no. 15, p. 1174-1181, 2010.
[21] P. W. Cleary, and M. D. Sinnott, “Separation Performance of Double Deck Banana Screens – Part 2: Quantitative Predictions,” Minerals Engineering, vol. 22, p. 1230–1244, 2009.
[22] P. W. Cleary, and M. D. Sinnott, “Separation Performance of Double Deck Banana Screens – Part 1: Flow and Separation for Different Accelerations,” Minerals Engineering, vol. 22, p. 1218–1229, 2009.
[23] G. W. Delaney, and P. Cleary, “Testing the Validity of the Spherical DEM Simulating Real Granular Screening Processes,” Chemical Engineering Science, vol. 68, p. 215–226, 2012.
[24] J. Chen, and K. W. Chu, “Prediction of the Performance of Dense Medium Cyclones in Coal Preparation,” Minerals Engineering, vol. 31, p. 59–70, 2012.
[25] K. W. Chu, and S. B. Kuang, “Particle Scale Modelling of the Multiphase Flow in a Dense Medium Cyclone,” Minerals Engineering, vol. 33, p. 34–45, 2012.
[26] K. W. Chu, and B. Wang, “CFD-DEM Modelling of Multiphase Flow in Dense Medium Cyclones,” Powder Technology, vol. 193, pp. 235–247, 2009.
[27] K. w. Chu, and B. Wang, “CFD–DEM Study of the Effect of Particle Density Distribution on the Multiphase Flow and Performance of Dense Medium Cyclone,” Minerals Engineering, vol. 22, p. 893–909, 2009.
[28] K. W. Chu, and B. Wang, “Particle Scale Modelling of the Multiphase Flow in a Dense Medium Cyclone: Effect of Vortex Finder Outlet Pressure,” Minerals Engineering, vol. 31, pp. 46–58, 2012.
[29] K. J. Dong, and S. B. Kuang, “Numerical Simulation of the In-Line Pressure Jig Unit in Coal Preparation,” Minerals Engineering, vol. 23, pp. 301–312, 2010.
[30] B. K. Mishra, and S. P. Mehrotra, “Modelling of Particle Stratification in Jigs by the Discrete Element Method,” Minerals Engineering, vol. 11, p. 511-522, 1998.
[31] P. W. Cleary, and G. K. Robinson, “Evaluation of Cross-Stream Sample Cutters Using Three-Dimensional Discrete Element Modelling,” Chemical Engineering Science, vol. 63, p. 2980-2993, 2008.
[32] P. W. Cleary, and G. K. Robinson, “Analysis of Vezin Sampler Performance,” Chemical Engineering Science, vol. 66, p. 2385–2397, 2011.
[33] G. K. Robinson, and P. W. Cleary, “The Conditions for Sampling of Particulate Materials to be Unbiased -- Investigation Using Granular Flow Modelling,” Minerals Engineering, vol. 12, p. 1101-1118, 1999.
[34] R. Balevicius, and R. Kacianauskas, “Analysis and DEM Simulation of Granular Material Flow Patterns in Hopper Models,” Advanced Powder Technology, vol. 22, p. 226–235, 2011.
[35] P. J. Owen, and P. W. Cleary, “Prediction of Screw Conveyor Performance Using the Discrete Element Method (DEM),” Powder Technology, vol. 193, p. 274–288, 2009.
[36] H. P. Zhu, and A. B. Yu, “Numerical Investigation of Steady and Unsteady State Hopper Flows,” Powder Technology, vol. 170, p. 125–134, 2006.
[37] N. Djordjevic, F. N. Shi, and R. D. Morrison, “Applying Discrete Element Modelling to Vertical and Horizontal Shaft Impact Crushers,” Minerals Engineering, vol. 16, p. 983–991, 2003.
[38] A. Refahi, J. Aghazadeh Mohandesi, and B. Rezai, “Discrete Element Modeling for Predicting Breakage Behavior and Fracture Energy of a Single Particle in a Jaw Crusher,” International journal of Mineral Processing, vol. 94, p. 83–91, 2010.
[39] P. Cleary, “Discrete element modeling of industrial granular flow applications,” Task vol. 2, p. 385-416, 1998.
[40] H. P. Zhu, “A theoretical analysis of the force models in discrete element method,” Powder Technology, vol. 161, p. 122-129, 2006.
[41] Ö. Ardiç, “Analysis of Bearing Capacity Using Discrete Element Method,” Civil Engineering, Middle East Technical University, 2006.
[42] S. V. Baars, “Discrete Element Analysis of Granular Materials,” Civil Engineering and Geosciences, University of Technology Delft, 1996.
[43] K. L. Johnson, “Contact Mechanics,” Cambridge University Press, 1985.
[44] R. J. Tuley, “Modeling Dry Powder Inhaler Operation with the Discrete Element Method,” Imperial College London, 2007.
[45] C. T. Jayasundara, R.Y. Yang  “Effects of Disc Rotation Speed and Media Loading on Particle Flow and Grinding Performance in a Horizontal Stirred Mill," International Journal of Mineral Processing, vol. 96, p. 27-35, 2010.