[1] Bagde, M. N., & Petroš, V. (2009). Fatigue and dynamic energy behaviour of rock subjected to cyclical loading. International Journal of Rock Mechanics and Mining Sciences, 46(1), 200-209.
[2] Shigley, J. E., Mischke, C. R., Budynas, R. G., Liu, X., & Gao, Z. (2011). Mechanical engineering design (9th ed.). New York, USA: McGraw-Hill 266-276
[3] Stephens, R. I., Fatemi, A., Stephens, R. R., & Fuchs, H. O. (2000). Metal fatigue in engineering. USA: John Wiley & Sons. 3-10, 59-98
[4] Bagde, M. N., & Petroš, V. (2005). Fatigue properties of intact sandstone samples subjected to dynamic uniaxial cyclical loading. International Journal of Rock Mechanics and Mining Sciences, 42(2), 237-250.
[5] Bagde, M. N., & Petroš, V. (2005). Waveform effect on fatigue properties of intact sandstone in uniaxial cyclical loading. Rock mechanics and rock engineering, 38(3), 169-196.
[6] Bagde, M. N., & Petroš, V. (2012). Dynamic Properties of Sandstone Rock Subjected to Cyclic Loading. ISRM India Journal-Half Yearly Technical Journal of Indian National Group of ISRM, 1(1), 5-16.
[7] Attewell, P., & Farmer, I. (1973). Fatigue behaviour of rock. Paper presented at the International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts.
[8] Burdine, N. (1963). Rock failure under dynamic loading conditions. Old SPE Journal, 3(1), 1-8.
[9] Guo, Y., Yang, C., & Mao, H. (2012). Mechanical properties of Jintan mine rock salt under complex stress paths. International Journal of Rock Mechanics and Mining Sciences, 56, 54-61.
[10] Ishizuka, Y., Abe, T., & Kodama, J. (1990). Fatigue behaviour of granite under cyclic loading. Paper presented at the ISRM international symposium—static and dynamic considerations in rock engineering, Swaziland.
[11] Khanlari, G., Momeni, A. A., & Karakus, M. (2014). Assessment of Fatigue Behavior of Alvand Monzogranite Rocks. Iranian Journal of Engineering Geology, 8(1), 2003-2020.
[12] Li, N., Chen, W., Zhang, P., & Swoboda, G. (2001). The mechanical properties and a fatigue-damage model for jointed rock masses subjected to dynamic cyclical loading. International Journal of Rock Mechanics and Mining Sciences, 38(7), 1071-1079.
[13] Ma, L.-j., Liu, X.-y., Wang, M.-y., Xu, H.-f., Hua, R.-p., Fan, P.-x.,... Yi, Q.-k. (2013). Experimental investigation of the mechanical properties of rock salt under triaxial cyclic loading. International Journal of Rock Mechanics and Mining Sciences, 62, 34-41.
[14] Passaris, E. (1982). Fatigue Characteristics Of Rocksalt With Reference To Underground Storage Caverns. Paper presented at the ISRM International Symposium.
[15] Fuenkajorn, K., & Phueakphum, D. (2010). Effects of cyclic loading on mechanical properties of Maha Sarakham salt. Engineering Geology, 112(1-4), 43–52.
[16] Ray, S., Sarkar, M., & Singh, T. (1999). Effect of cyclic loading and strain rate on the mechanical behaviour of sandstone. International Journal of Rock Mechanics and Mining Sciences, 36(4), 543-549.
[17] Singh, S. (1988). Relationship among fatigue strength, mean grain size and compressive strength of a rock. Rock Mechanics and Rock Engineering, 21(4), 271-276.
[18] Singh, S. (1989). Fatigue and strain hardening behaviour of graywacke from the flagstaff formation, New South Wales. Engineering geology, 26(2), 171-179.
[19] Song, H., Zhang, H., Kang, Y., Huang, G., Fu, D., & Qu, C. (2013). Damage evolution study of sandstone by cyclic uniaxial test and digital image correlation. Tectonophysics.
[20] Song, R., Yue-ming, B., Jing-Peng, Z., De-yi, J., & Chun-he, Y. (2013). Experimental investigation of the fatigue properties of salt rock. International Journal of Rock Mechanics and Mining Sciences, 64, 68-72.
[21] Voznesenskii, A. S., Kutkin, Y. O., Krasilov, M. N., & Komissarov, A. A. (2015). Predicting fatigue strength of rocks by its interrelation with the acoustic quality factor. International Journal of Fatigue.
[22] Zhenyu, T., & Haihong, M. (1990). An experimental study and analysis of the behaviour of rock under cyclic loading. Paper presented at the International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts.
[23] Jafari, M., Amini Hosseini, K., Pellet, F., Boulon, M., & Buzzi, O. (2003). Evaluation of shear strength of rock joints subjected to cyclic loading. Soil Dynamics and Earthquake Engineering, 23(7), 619-630.
[24] Wang, W.-h., Li, X.-b., Zhang, Y.-p., & Zuo, Y.-j. (2007). Closure behavior of rock joint under dynamic loading. Journal of Central South University of Technology, 14, 408-412.
[25] Erarslan, N., & Williams, D. (2012). Mechanism of rock fatigue damage in terms of fracturing modes. International Journal of Fatigue, 43, 76-89.
[26] Erarslan, N., & Williams, D. (2012). Investigating the Effect of Fatigue on Fracturing Resistance of Rocks. Journal of Civil Engineering and Architecture, 6(10), 1310-1318.
[27] Nejati, H. R., & Ghazvinian, A. (2014). Brittleness effect on rock fatigue damage evolution. Rock Mechanics and Rock Engineering, 47(5), 1839-1848.
[28] Erarslan, N., & Williams, D. (2012). Investigating the effect of cyclic loading on the indirect tensile strength of rocks. Rock mechanics and rock engineering, 45(3), 327-340.
[29] Li, G., Moelle, K., & Lewis, J. (1992). Fatigue crack growth in brittle sandstones. Paper presented at the International journal of rock mechanics and mining sciences & geomechanics abstracts.
[30] Haimson, B. C., & Kim, C. M. (1971). Mechanical Behavior of Rock under Cyclic Fatigue. Paper presented at the Stability of Rock Slopes, United States.
[31] Le, J.-L., Manning, J., & Labuz, J. F. (2014). Scaling of fatigue crack growth in rock. International Journal of Rock Mechanics and Mining Sciences, 72, 71-79.
[32] Eberhardt, E. (1998). Brittle rock fracture and progressive damage in uniaxial compression. University of Saskatchewan Saskatoon.
[33] Tien, Y., Lee, D., & Juang, C. (1990). Strain, pore pressure and fatigue characteristics of sandstone under various load conditions. Paper presented at the International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts.
[34] Liu, E., Huang, R., & He, S. (2012). Effects of frequency on the dynamic properties of intact rock samples subjected to cyclic loading under confining pressure conditions. Rock mechanics and rock engineering, 45(1), 89-102.
[35] Chen, Y., Ni, J., Shao, W., Zhou, Y., Javadi, A., & Azzam, R. (2012). Coalescence of fractures under uni-axial Compression and fatigue loading. Rock mechanics and rock engineering, 45(2), 241-249.
[36] Xiao, J., Ding, D., Xu, G., & Jiang, F. (2008). Waveform effect on quasi-dynamic loading condition and the mechanical properties of brittle materials. International Journal of Rock Mechanics and Mining Sciences, 45(4), 621-626.
[37] Fleck, N., Shin, C., & Smith, R. A. (1985). Fatigue crack growth under compressive loading. Engineering fracture mechanics, 21(1), 173-185.
[38] Dieter, G. E. (1998). Mechanical metallurgy. London: McGraw-Hill New York.
[39] Lalanne, C. (2010). Mechanical Vibration and Shock Analysis, Fatigue Damage (Vol. 4): John Wiley & Sons. 40-48
[40] Instron. (2004). R. R. Moore Rotating Beam Fatigue Testing System. In I. I. P. Group (Ed.), RRMoore Series Fixtures. USA.
[41] Lee, Y.-L. (2005). Fatigue testing and analysis: theory and practice. USA: Butterworth-Heinemann. 103-113
[42] JSME. (1981). Standard method of statistical fatigue testing: JSME Standard Method for Determination of S-N Curves. JSME S(002-1981).