تخمین قطعات یدکی مورد نیاز در معادن به روش تحلیل قابلیت اطمینان، مطالعه موردی معدن مس سونگون

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده معدن، ژئوفیزیک و نفت، دانشگاه صنعتی شاهرود

2 مدیر شرکت بین‌المللی SGS شعبه تبریز، ایران

10.29252/anm.8.15.25

چکیده

مدیریت قطعات یدکی و تدارکات، وجهی از مدیریت پشتیبانی محصولات و مؤثر در هزینه چرخه عمر محصول است. دسترسی به قطعات یدکی به هنگام تقاضا، زمان افت سیستم/ماشین را کاهش داده و کارایی آن را افزایش و در نتیجه سود حاصله از کل پروژه را افزایش خواهد داد. در صورت ذخیره تعداد بهینه قطعات یدکی در انبار، هزینه‌های چرخه عمر محصول به عنوان تابع هدف، کمینه خواهد شد. تعداد بهینه قطعات‌یدکی را نیز می‌توان با وارد نمودن عوامل مختلف مانند تعداد وقوع خرابی، تعداد تجهیزات موجود، حساسیت قطعه، هزینه‌های خرید قطعه، فاصله بین تولیدکننده تا مصرف‌کننده و زمان‌های تأخیر بین تصمیم تا اجرا تعیین کرد. تخمین قطعات یدکی مورد نیاز بر اساس ویژگی‌های فنی و کارکردی سیستم و اجزاء یکی از مؤثرترین راه‌ها برای بهینه‌سازی توقفات ناخواسته است. از این‌رو در این مقاله رویکرد پیش‌بینی قطعات یدکی مورد نیاز بر اساس قابلیت اطمینان پیشنهاد شده است. در این رویکرد نخست قابلیت اطمینان جزء، بر اساس داده‌های خرابی تعیین شده و سپس تعداد قطعات یدکی موردنیاز، میزان سفارش بهینه و زمان ارسال سفارش بر اساس مصرف سالیانه محاسبه خواهد شد. همچنین به‌منظور کاربرد اجرایی رویکرد پیشنهادی مطالعه موردی از معدن مس سونگون بررسی شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Mining Spare Parts Provision by Reliability Analysis, Case Study: Sungun Copper Mine

نویسندگان [English]

  • Ali Nouri Gharahasanloo 1
  • Reza Khalokakaie 1
  • Mohammad Ataei 1
  • Mehdi Mokhberdoran 2
1 Dept. of Mining, Geophysics & Petroleum Shahrood University of Technology, Iran
2 Branch Manager of SGS, Tabriz, Iran
چکیده [English]

Summary
Maintenance and spare parts support are two basic and critical issues of support to product, because often due to lack of technology and other compelling factors (like economy, environmental situations, etc), in the design phase it is impossible to design a product that will fulfill its function. Therefore, the need for support haw become vital to enhance system effectiveness and prevent unexpected failure. This paper was focused on second issues of support. Thus, for studying of the required spare parts, we analyzed the failure time data for a period of 11 years, which has been obtained from Sungun Copper mine in Iran. The expected number of the required spare tires in one year (three working shifts per day) when ,  and  hours for lower, optimum and upper value are considered to be the real mean time to failure of the tire with a 95 percent confidence of availability are equal to 3.2, 2 and 1.2 respectively. Then, the economic order quantity with respect to annual demand rate is calculated.
 
Introduction
Product support falls into two broad categories, namely support to the customer and support to the product. The research presented in this paper is focused on support to the product, which is greatly influenced by the product reliability characteristics. Spare parts organize one of the product support issues that can be divided into two types, namely repairable and non-repairable. In the present research we deal with non-repairable parts. Spare parts provisioning is a complex problem and requires an accurate analysis of all factors that may affect the required number of spare parts. Different reliability based statistical approaches have been developed for spare parts provision. The reliability-based spare parts provision is the most common one.
 
Methodology and Approaches
The methodology is based on three main tasks, 1) Definition of boundaries, assumptions, and data collection.2) Identification of analysis approach and estimation of component reliability and failure rate characteristics. 3) Required spare parts calculation and inventory management requirements
 
Results and Conclusions
In this paper, a methodology is proposed to consider reliability in the required spare parts tires estimation. The result of analysis for optimum estimation of PLP parameters presented that for a year dump truck need 2 new tires. For inventory management whenever the inventory position reaches 1 units/dump truck, we should order 2 units/dump truck.

کلیدواژه‌ها [English]

  • Mining
  • Reliability
  • Spare parts
  • Tire
  • Sungun Copper Mine
[1]           Standard, N. (1998). Regularity management & reliability technology. Norwegian Technology Standards Institution, Oslo, Norway, Z-016.
[2]           Barabadi, A. (2011). Production Performance Analysis: Reliability, Maintainability and Operational Conditions. University of Stavanger, Stavanger NORWAY.
[3]           Ghodrati, B., Kumar, U., & Kumar, D. (2003). Product support logistics based on product design characteristics and operating environment (p. 21). Presented at the 38th Annual International Logistics Conference and Exhibition: SOLE 2003, Huntsville, United States: Society of Logistics Engineers.
[4]           Buzacott, J. A. (1970). Markov approach to finding failure times of repairable systems. Reliability, IEEE Transactions on, 19(4), 128–134.
[5]           Chow, D. K. (1973). Reliability of some redundant systems with repair. Reliability, IEEE Transactions on, 22(4), 223–228.
[6]           Kodama, M., & Fukuta, J. (1975). Renewal theoretical approach to the mission reliability of a redundant repairable system with two dissimilar units.
[7]           Kumar, S. (2010, March). Performance Analysis and Optimization of Some Operating Systems of a Fertilizer Plant (Phd Thesis). Department of mechanical engineering National institute of technology Kurukshetra, India.
[8]           Goel, L., & Gupta, R. (1984). Analysis of a two-unit standby system with three modes and imperfect switching device. Microelectronics Reliability, 24(3), 425–429.
[9]           Smith, C. H., & Schaefer, M. K. (1985). Optimal inventories for repairable redundant systems with aging components. Journal of Operations Management, 5(3), 339–349.
[10]         Billinton, R., & Allan, R. N. (1988). Reliability assessment of large electric power systems. Kluwer Academic Print on Demand.
[11]         Kumar, U., & Klefsjö, B. (1992). Reliability analysis of hydraulic systems of LHD machines using the power law process model. Reliability Engineering & System Safety, 35(3), 217–224. Doi:10.1016/0951-8320(92)90080-5
[12]         Ntuen, C. A. (1991). An economic preventive maintenance scheduling model with truncated gamma function. Reliability Engineering & System Safety, 31(1), 31–38.
[13]         AHMAD, A., & Kothari, D. (1998). A review of recent advances in generator maintenance scheduling. Electric machines and power systems, 26(4), 373–387.
[14]         Lim, T.-J., & Lie, C. H. (2000). Analysis of system reliability with dependent repair modes. Reliability, IEEE Transactions on, 49(2), 153–162.
[15]         Marseguerra, M., & Zio, E. (2000). Optimizing maintenance and repair policies via a combination of genetic algorithms and Monte Carlo simulation. Reliability Engineering & System Safety, 68(1), 69–83.
[16]         Sarkar, J., & Sarkar, S. (2001). Availability of a periodically inspected system supported by a spare unit, under perfect repair or perfect upgrade. Statistics & probability letters, 53(2), 207–217.
[17]         Rustenburg, W., van Houtum, G.-J., & Zijm, W. (2001). Spare parts management at complex technology-based organizations: An agenda for research. International Journal of Production Economics, 71(1), 177–193.
[18]         Pérès, F., & Noyes, D. (2003). Evaluation of a maintenance strategy by the analysis of the rate of repair. Quality and Reliability Engineering International, 19(2), 129–148. doi:10.1002/qre.515
[19]         Gasmi, S., Love, C. E., & Kahle, W. (2003). A general repair, proportional-hazards, framework to model complex repairable systems. Reliability, IEEE Transactions on, 52(1), 26–32.
[20]         Dhillon, B. (2003). Methods for performing human reliability and error analysis in health care. International Journal of Health Care Quality Assurance, 16(6), 306–317.
[21]         Kumar, U. (2003). Service delivery strategy for mining systems. Application of Computers and Operations Research in the Minerals Industries. South African Institute of Mining and Metallurgy, 43–48.
[22]         Pérez-Ocón, R., & Montoro-Cazorla, D. (2004). A multiple system governed by a quasi-birth-and-death process. Reliability Engineering & System Safety, 84(2), 187–196.
[23]         Samanta, B., Sarkar, B., & Mukherjee, S. (2004). Reliability modelling and performance analyses of an LHD system in mining. South African Institute Mining and Metallurgy, 104, 1–8.
[24]         Caglar, D., Li, C.-L., & Simchi-Levi, D. (2004). Two-echelon spare parts inventory system subject to a service constraint. IIE Transactions, 36(7), 655–666.
[25]         Barabady, J., & Kumar, U. (2005). Maintenance Schedule by Using Reliability Analysis: A Case Study at Jajram Bauxite Mine of Iran (Vol. 2, pp. 831–838). Presented at the 20th World Mining Congress, Tehran, Iran: World Mining Congress.
[26]         Ghodrati, B., & Kumar, U. (2005). Operating environment-based spare parts forecasting and logistics: a case study. International Journal of Logistics Research and Applications, 8(2), 95–105. Doi: 10.1080/ 13675560512331338189
[27]         Ghodrati, B., & Kumar, U. (2005). Reliability and operating environment-based spare parts estimation approach: a case study in Kiruna Mine, Sweden. Journal of Quality in Maintenance Engineering, 11(2), 169–184.
[28]         Markeset, T., & Kumar, U. (2005). Product support strategy: conventional versus functional products. Journal of Quality in Maintenance Engineering, 11(1), 53–67.
[29]         Ghodrati, B. (2006). Weibull and Exponential Renewal Models in Spare Parts Estimation: A Comparison. International Journal of Performability Engineering, 2(2), 135.
[30]         Chen, M.-C., Hsu, C.-M., & Chen, S.-W. (2006). Optimizing joint maintenance and stock provisioning policy for a multi-echelon spare part logistics network. Journal of the Chinese Institute of Industrial Engineers, 23(4), 289–302.
[31]         Ghodrati, B., Akersten, P.-A., & Kumar, U. (2007). Spare parts estimation and risk assessment conducted at Choghart Iron Ore Mine: A case study. Journal of Quality in Maintenance Engineering, 13(4), 353–363.
[32]         Ilgin, M. A., & Tunali, S. (2007). Joint optimization of spare parts inventory and maintenance policies using genetic algorithms. The International Journal of Advanced Manufacturing Technology, 34(5–6), 594–604.
[33]         Barabady, J., & Kumar, U. (2008). Reliability analysis of mining equipment: A case study of a crushing plant at Jajarm Bauxite Mine in Iran. Reliability Engineering & System Safety, 93(4), 647–653. doi:10.1016/j.ress.2007.10.006
[34]         Cui, L. (2008). Maintenance Models and Optimization. In K. B. Misra (Ed.), Handbook of Performability Engineering (pp. 789–805). Springer London.
[35]         Lisnianski, A., & Ding, Y. (2009). Redundancy analysis for repairable multi-state system by using combined stochastic processes methods and universal generating function technique. Reliability Engineering & System Safety, 94(11), 1788–1795.
[36]         Diallo, C., Ait-Kadi, D., & Chelbi, A. (2009). Integrated Spare Parts Management. In M. Ben-Daya, S. O. Duffuaa, A. Raouf, J. Knezevic, & D. Ait-Kadi (Eds.), Handbook of Maintenance Management and Engineering (pp. 191–222). Springer London.
[37]         Hoseinie, S. H., Ataei, M., Khalokakaie, R., & Kumar, U. (2011). Reliability and maintainability analysis of electrical system of drum shearers. Journal of Coal Science and Engineering (China), 17(2), 192–197. Doi: 10.1007/s12404-011-0216-z
[38]         Nan, M. S., Nicolescu, C., Jula, D., Bolovan, C., Voicu, G. V., & Petre, G. (2011). Practical aspects regarding spare parts reliability evaluation within an integrated management system. International Journal of Mathematical Models and Methods in Applied Sciences, 5(2), 238–246.
[39]         Ghodrati, B., Banjevic, D., & Jardine, A. (2010). Developing effective spare parts estimations results in improved system availability (pp. 1–6). Presented at the Reliability and Maintainability Symposium (RAMS), 2010 Proceedings-Annual, IEEE.
[40]         Hoseinie, S. H., Ataei, M., Khalokakaie, R., Ghodrati, B., & Kumar, U. (2012). Reliability analysis of the cable system of drum shearer using the power law process model. International Journal of Mining, Reclamation and Environment, 1–15. doi:10.1080/17480930.2011.622477
[41]         Ghodrati, B., Benjevic, D., & Jardine, A. (2012). Product support improvement by considering system operating environment: A case study on spare parts procurement. International Journal of Quality & Reliability Management, 29(4), 436–450. Doi: 10.1108/02656711211224875
[42]         Hoseinie, S. H., Ataei, M., Khalokakaie, R., Ghodrati, B., & Kumar, U. (2012). Reliability analysis of drum shearer machine at mechanized longwall mines. Journal of quality in maintenance engineering, 18(1), 98–119.
[43]         Bala, P. K., & Xavier, M. (2012). Purchase Dependency Based Demand Forecasting In Improved Spare Parts Inventory Management. International Journal of Research in Management, Economics and Commerce, 2(11), 18–28.
[44]         Lanting, L. (2009, May). Modelling Breakdown Durations in Simulation Models of Engine Assembly Lines (Thesis for the degree of Doctor of Philosophy). University of Southampton, Southampton, United Kingdom.
[45]         Hall, R. A., & Daneshmend, L. K. (2003). Reliability Modelling of Surface Mining Equipment: Data Gathering and Analysis Methodologies. International Journal of Surface Mining, Reclamation and Environment, 17(3), 139–155. doi:10.1076/ijsm.17.3.139.14773
[46]         Yin, R. K. (2008). Case study research: Design and methods (Vol. 5). SAGE Publications, Incorporated.
[47]         Clauset, A. (2011, August 23). Models and Simulation for Complex Systems.
[48]         Garmabaki, A. H. S., Ahmadi, A., Mahmood, Y. A., & Barabadi, A. (2016). Reliability Modelling of Multiple Repairable Units. Quality and Reliability Engineering International, 32(7), 2329–2343. doi:10.1002/qre.1938
[49]         Garmabaki, A., Ahmadi, A., Block, J., Pham, H., & Kumar, U. (2016). A reliability decision framework for multiple repairable units. Reliability Engineering & System Safety, 150, 78–88.
[50]         Ghodrati, B. (2005). Reliability and operating environment based spare parts planning (Doctoral Thesis). Luleå University of Technology, Sweden.