[1] Neou C. Direct method for determining Airy polynomial series. J Appl Mech 1957;24:387–90.
[2] Irwin GR. Analysis of stresses and strains near the end of a crack transversing a plate. J Appl Mech Trans ASME 1957;24:361–4.
[3] Little RW. Elasticity. Englewood Cliffs, NJ.: Princehall; 1973.
[4] Sneddon IN. Application of integral transforms in the theory of elasticity. New York: Springer Verlag; 1978.
[5] Muskhelishvili NI. Some basic problems of the mathematical theory of elasticity. 3rd ed. Holland: Groningen; 1953.
[6] Sanford RJ. Principles of fracture mechanics. USA: Prentice Hall; 2003.
[7] Feng X-Q, Shi Y-F, Wang X-Y, Li B, Yu S-W, Yang Q. Dislocation-based semi-analytical method for calculating stress intensity factors of cracks: Two-dimensional cases. Eng Fract Mech 2010;77:3521–31. doi:10.1016/j.engfracmech.2010.03.004.
[8] Mikhailov DN, Economides MJ, Nikolaevskiy VN. Fluid leakoff determines hydraulic fracture dimensions: Approximate solution for non-Newtonian fracturing fluid. Int J Eng Sci 2011;49:809–22. doi:10.1016/j.ijengsci.2011.03.021.
[9] Kotousov A, Chang D. Local Plastic Collapse Conditions for a Plate Weakened by Two Closely Spaced Collinear Cracks. Eng Fract Mech 2014. doi:10.1016/j.engfracmech.2014.05.009.
[10] Jackiewicz J, Holka H. Computational simulation of crack problems by means of the contour element method. Eng Fract Mech 2008;75:461–74. doi:10.1016/j.engfracmech.2007.01.011.
[11] MARTIN HS. ELASTICITY Theory, Applications, and Numerics. Elsevier; 2005.
[12] Sokolnikoff I. Mathematical Theory of Elesticity. New York: McGraw-Hill Book Company; 1956.
[13] Reismann H, Pawlik PS. Elasticity theory and applications. New York: John Wiley; 1980.
[14] Reddy JN. Energy and variational methods in applied mechanics. New York: John Wiley; 1984.
[15] Mura T, Koya T. Variational methods in mechanics. Oxford: Oxford Univ. Press.; 1992.
[16] Crouch SL, Starfield AM. Boundary Element Methods in Solid Mechanics. London: George allen & Unwin; 1983.
[17] Fatehi Marji M. Crack propagation modeling in rocks and its application to indentation problems. Middle East Technical University, Ankara, Turkey, 1990.
[18] Fatehi Marji M. Modelling of cracks in rock fragmentation with a higher order displacement discontinuity method. Middle east technical university, 1997.
[19] Gordeliy E, Peirce A. Enrichment strategies and convergence properties of the XFEM for hydraulic fracture problems. Comput Methods Appl Mech Eng 2015;283:474–502. doi:10.1016/j.cma.2014.09.004.
[20] Vergani L, Capitani R, Iannitti G, Bonora N, Gentile D. Assessment of an engineering approach to the evaluation of the cod of off-centered crack in pipes under bending for LBB design. Eng Fract Mech 2012;81:69–79.
[21] Li LC, Tang C a., Li G, Wang SY, Liang ZZ, Zhang YB. Numerical Simulation of 3D Hydraulic Fracturing Based on an Improved Flow-Stress-Damage Model and a Parallel FEM Technique. Rock Mech Rock Eng 2012. doi:10.1007/s00603-012-0252-z.
[22] Cheng A, Detournay E. A direct boundary element method for plane strain poroelasticity. Int J Numer … 1988.
[23] Haider M a, Guilak F. Application of a Three-Dimensional Poroelastic BEM to Modeling the Biphasic Mechanics of Cell-Matrix Interactions in Articular Cartilage (REVISION). Comput Methods Appl Mech Eng 2007;196:2999–3010. doi:10.1016/j.cma.2006.08.020.
[24] Steinbach O, Unger G. A boundary element method for the Dirichlet eigenvalue problem of the Laplace operator. Numer Math 2009;113:281–98. doi:10.1007/s00211-009-0239-1.
[25] Hamzehei Javaran S, Khaji N. Dynamic analysis of plane elasticity with new complex Fourier radial basis functions in the dual reciprocity boundary element method. Appl Math Model 2014;38:3641–51. doi:10.1016/j.apm.2013.12.010.
[26] Kamali Yazdi A, Omidvar B, Rahimian M. Improving the stability of time domain dual boundary element method for three dimensional fracture problems: A time weighting approach. Eng Anal Bound Elem 2011;35:1142–8. doi:10.1016/j.enganabound.2011.05.003.
[27] Majchrzak E, Turchan L. The general boundary element method for 3D dual-phase lag model of bioheat transfer. Eng Anal Bound Elem 2015;50:76–82. doi:10.1016/j.enganabound.2014.07.012.
[28] Leme SPL, Aliabadi MH. Dual boundary element method for dynamic analysis of stiffened plates. Theor Appl Fract Mech 2012;57:55–8. doi:10.1016/j.tafmec.2011.12.009.
[29] Alatawi IA, Trevelyan J. A direct evaluation of stress intensity factors using the Extended Dual Boundary Element Method. Eng Anal Bound Elem 2015;52:56–63. doi:10.1016/j.enganabound.2014.11.022.
[30] Timoshenko SP, Goodier NG. Theory of elasticity. New York: McGraw-Hill Book Company; 1970.
[31] Reddy JN. An introduction to the finite element method. New York: McGraw Hill; 1993.
[32] Zienkiewicz OC, Taylor RL. The finite element method, Volumes I to III. London: McGraw-Hill Book Company; 2000.
[33] Young WK, Hyochoong B. Finite element method using MATLAB. London: CRC Press, Taylor & Francis Group; 2000.
[34] Brebbia CA, Dominguez J. Boundary elements: an introductory course. Southampton: WIT press; 1996.
[35] Banerjee PK. The Boundary Element Methods in Engineering. London: McGraw-Hill Book Company; 1994.
[36] Ameen M. computation of elasticity. Calicut: Alpha Science International Ltd.; 2005.
[37] Portela A, Aliabadi MH, Rooke DP. The dual boundary element method, effective implementation for crack problems. Int J Num Meth Eng 1992;22:1269–87.
[38] Chen JT, Hong HK. Review of dual boundary element methods with emphasis on hyper singular integrals and divergent series. Appl Mech Rev ASME 1999;52:17–33.
[39] Fatehi Marji M, Hosseini Nasab H, Kohsary AH. On the uses of special crack tip elements in numerical rock fracture mechanics. Int J Solids Struct 2006;43:1669–92. doi:10.1016/j.ijsolstr.2005.04.042.
[40] Fatehi Marji M, Hosseini Nasab H, Kohsari AH. A new cubic element formulation of the displacement discontinuity method using three special crack tip elements for crack analysis. J Solids Struct 2007;1:61–91.
[41] Fatehi Marji M, Hosseini-Nasab H, Morshedi AH. Numerical modeling of the mechanism of crack propagation in rocks under TBM disc cutters. Mech Mater Struct 2009;4:605–27.
[42] Hosseini Nasab H, Fatehi Marji M. A Semi-infinite Higher Order Displacement Discontinuity Method and Its Application to the Quasi-static Analysis of Radial Cracks Produced by Blasting. J Mech Mater Struct 2007;2.
[43] Fatehi Marji M, Dehghani I. Kinked crack analysis by a hybridized boundary element/boundary collocation method. Int J Solids Struct 2010;47:922–33. doi:10.1016/j.ijsolstr.2009.12.008.
[44] Fatehi Marji M. Higher order displacement discontinuity method in rock fracture mechanics. Yazd University; 2015.
[45] Fatehi Marji M, Lazemi HA, Dabbagh A. Linear kinked displacement discontinuity elements and mechanism of secondary crack propagation. IAMG 2011, Salzburg, Austria: 2011.
[46] Crouch SL. Solution of plane elasticity problems by the displacement discontinuity method. I. Infinite body solution. Int J Numer Methods Eng 1976;10:301–43.
[47] Shou KJ, Crouch SL. A higher order displacement discontinuity method for analysis of crack problems. Int J Rock Mech Min Sci Geomech Abstr 1995;32:49–55.
[48] Guo H, Aziz NI, Schmitt LC. Linear elastic crack tip modeling by displacement discontinuity method. Engin Fract Mech 1990;36:933–43.
[49] Whittaker BN, Singh RN, Sun G. Rock fracture mechanics, principles design and applications. Netherland: 1992.
[50] Cotterell B, Rice JR. Slightly curved or kinked cracks. Int J Fract Mech 1980;16:155–69.