ارزیابی روش‌های تکراری زیرفضای کریلف برای محاسبه جریان سیال در شبکه شکستگی‌های مجزای سه‌بعدی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی معدن، نفت و ژئوفیزیک، دانشگاه صنعتی شاهرود

10.29252/anm.2019.8651.1301

چکیده

محاسبه جریان سیال در محیط‌های سنگی درزه‌دار یکی از موضوعات بسیار مهم در مباحث تراوایی در مهندسی سنگ است. توده‌سنگ شامل شبکه درهم‌تنیده‌ای از ماده‌سنگ و شکستگی‌ها است. تعداد و الگوی اتصال‌پذیری شکستگی‌ها دو عامل کلیدی کنترل‌کننده جریان سیال در توده‌سنگ هستند. یکی از روش‌هایی که می‌تواند ساختار هندسی توده‌سنگ را به دقیق‌ترین شکل ممکن نشان دهد، روش شبکه شکستگی‌های مجزا (DFN) است. با توجه به‌این‌که ناهمگنی و ناهمسانگردی توده‌های سنگی در جهات مختلف می‌تواند در محاسبه جریان سیال بسیار اثرگذار باشد، روش‌ شبکه شکستگی‌های مجزای سه‌بعدی بیشتر در کانون توجه قرار دارد. محاسبه‌ی عددی جریان در توده‌سنگ مستلزم حل معادلات پرتعداد و پیچیده‌ای است که توسط روش‌های عددی نظیر روش المان محدود تولید می‌شوند. حل دستگاه‌های معادلات مذکور معمولاً ساده نیست و نیازمند روش‌های خاصی است که یکی از بهترین ‌آنها، روش‌های تکراری زیرفضای کریلف است. در این تحقیق پس از اعتبارسنجی محاسبات روش‌های مختلف زیرفضای کریلف با یک روش مستقیم و مدلسازی 3DEC، ارزیابی کارایی این روش‌ها مورد بررسی قرارگرفته و کارآمدترین آنها از طریق یک سری تحلیل‌های حساسیت بر روی پارامتر‌های دقت و سرعت انجام محاسبات، تعیین شده است. با توجه به تحلیل‌های انجام شده در این تحقیق، روش‌های CG، CR و IOM جزو سریع‌ترین و دقیق‌ترین روش‌های زیرفضای کریلف انتخاب شده‌اند. نتایج این پژوهش می‌تواند راهنمای خوبی برای پژوهشگرانی باشد که بر روی حل جریان سیال در توده‌سنگ متمرکز هستند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Krylov Subspaces Iterative Methods for Calculating Fluid Flow in Three-Dimensional Discrete Fracture Networks

نویسندگان [English]

  • Soheil Mohajerani
  • Seyed-Mohammad Esmaeil Jalali
  • Seyed Rahman Torabi
Dept. of Mining, Petroleum & Geophysics, Shahrood University of Technology, Shahrood, Iran
چکیده [English]

Summary
Computation of fluid flow in fractured rocks is very important. The rock-mass is consisted of intact rock and fractures. Number and connectivity pattern of the fractures are two key factors controlling the fluid flow in the rock-masses. One of the most accurate methods to model geometrical structure of the rock-masses is discrete fracture network (DFN). Anisotropy and heterogeneity of the rock masses often affects the computations of the flow, therefore, three-dimensional DFN has been more desirable in literatures. Numerical calculation of the fluid flow requires solving a large system of equations which are generated by discretization schemes. Solving these systems are not usually straightforward and it needs more special and complex methods to converge the result. One of the best methods in this regard are Krylov subspaces methods. Evaluation of different Krylov subspaces methods which have been validated in comparison with a direct method and 3DEC modeling, has been considered in this research and the most optimized methods have been determined using a series of sensitivity analyses. Therefore, CG, CR and IOM have been characterized as the most accurate and fastest Krylov subspaces methods. The provided results in this research can be a sufficient guideline for the researchers who want to study the fluid flow in fractured rocks.
 
Introduction
In this research, a numerical model is developed to calculate flow field in fractured rocks. The rock-mass is modeled geometrically from crude mapping data and an optimized algorithm is chosen to triangulate the geometrical framework of the model. The flow filed is discretize using a numerical scheme and the generated system of equations are solved using different iterative methods. The application of different iterative solving methods has been validated in comparison with direct one and a series of sensitivity analysis is performed to determine the most optimal iterative methods.
 
Methodology and Approaches
3D-DFN forms the geometrical framework of the present geometrical model as one of the most accurate and used methods to simulate fractured rocks. The algorithm provided by Erhel et. al. is the foundation of meshing process and FEM method is used to discretize the geometrical structure. The large system of equation generated by FEM is solved using different Krylov subspaces methods and the results are validated by LQ factorization. The sensitivity analysis is performed on two key parameters, precise and CPU run-time of the model to determine the most optimal method.
 
Results and Conclusions
The results of sensitivity analysis show that the methods CG, CR and IOM are the most optimal methods of Krylov subspaces which can be well compatible to calculation of fluid flow in 3D-DFN models.

کلیدواژه‌ها [English]

  • Krylov subspaces
  • Iterative methods
  • Finite Element method
  • 3D-DFN
  • Fluid flow
  • Meshing

توده‌سنگ ترکیبی از ماده‌سنگ و ناپیوستگی است. ناپیوستگی‌ها شامل تخلخل، شکستگی‌، درزه‌، گسل‌ و صفحات لایه‌بندی هستند و نقش مهمی در حوزه مهندسی سنگ به‌ویژه در برآورد جریان سیال به‌ منظور طراحی و اجرای مخازن زیرزمینی برای ذخیره‌سازی ایمن مواد رادیواکتیو و دفن زباله‌های خطرناک، انتقال آب زیرزمینی در سفره‌ها، حرکت نفت و گاز در مخازن هیدروکربوری و تعیین میزان آبگذری در پی سدها و جداره‌های تونل‌ها دارند. همچنین شکستگی‌های سنگ عامل تعیین‌کننده‌ای در ناپایداری شیب‌های سنگی و معدن‌کاری روباز و زیرزمینی در شرایط وجود آب زیرزمینی به‌حساب می‌آیند [1-5].

نحوه اتصال شکستگی‌ها به یکدیگر (اتصال‌پذیری) در توده‌سنگ، الگو‌ی جریان سیال را تعیین می‌نماید. هنگامی‌که نفوذ‌پذیری سنگ بکر در مقایسه با نفوذ‌پذیری شکستگی‌ها بسیار کمتر باشد (به ‌ویژه برای سنگ‌های با تخلخل پایین) سیال در امتداد مسیر‌های ایجاد شده به‌ وسیله شکستگی‌های متصل ‌به ‌هم جریان می‌یابد. هنگامی‌که جریان سیال در مدل فیزیکی توده‌سنگ به حد تراوش نزدیک می‌شود، میدان جریان از الگوی اتصال‌پذیری شکستگی‌ها در مقایسه با تعداد آنها، تبعیت بیشتری خواهد کرد. در چنین حالتی، حتی یک تغییر کوچک در نحوه اتصال‌پذیری شکستگی‌ها (به‌ عنوان‌ مثال اضافه شدن یک شکستگی کوچک به مدل) می‌تواند موجب تغییر قابل‌توجهی در میدان جریان شود ]6[.

[1]           Butscher, Christoph, Einstein, Herbert H, and Huggenberger, Peter (2011), 'Effects of tunneling on groundwater flow and swelling of clay‐sulfate rocks', Water Resources Research, 47 (11).
[2]           Gellasch, Christopher A, et al. (2013), 'Characterization of fracture connectivity in a siliciclastic bedrock aquifer near a public supply well (Wisconsin, USA)', Hydrogeology Journal, 21 (2), 383-99.
[3]           Hyman, Jeffrey D, et al. (2014), 'Conforming Delaunay triangulation of stochastically generated three dimensional discrete fracture networks: a feature rejection algorithm for meshing strategy', SIAM Journal on Scientific Computing, 36 (4), A1871-A94.
[4]           Karra, Satish, et al. (2015), 'Effect of advective flow in fractures and matrix diffusion on natural gas production', Water Resources Research, 51 (10), 8646-57.
[5]           Xu, Chaoshui and Dowd, Peter (2010), 'A new computer code for discrete fracture network modelling', Computers & Geosciences, 36 (3), 292-301.
[6]           Jing, L, Tsang, C-F, and Stephansson, O (1995), 'DECOVALEX—an international co-operative research project on mathematical models of coupled THM processes for safety analysis of radioactive waste repositories', International journal of rock mechanics and mining sciences & geomechanics abstracts (32: Elsevier), 389-98.
[7]           Berkowitz, Brian (2002), 'Characterizing flow and transport in fractured geological media: A review', Advances in water resources, 25 (8), 861-84.
[8]           Zimmerman, RW and Bodvarsson, GS (1996), 'Effective transmissivity of two-dimensional fracture networks', International journal of rock mechanics and mining sciences & geomechanics abstracts (33: Elsevier), 433-38.
[9]           Yu, Q, Tanaka, M, and Ohnishi, Y (1999), 'An inverse method for the model of water flow in discrete fracture network', Proceedings of the 34th Janan National Conference on Geotechnical Engineering, Tokyo, 1303-4.
[10]         Cacas, Marie-Christine, et al. (1990), 'Modeling fracture flow with a stochastic discrete fracture network: calibration and validation: 1. The flow model', Water Resources Research, 26 (3), 479-89.
[11]         de Dreuzy, Jean‐Raynald, et al. (2004), 'Influence of spatial correlation of fracture centers on the permeability of two‐dimensional fracture networks following a power law length distribution', Water resources research, 40 (1).
[12]         Dreuzy, J‐R, Méheust, Yves, and Pichot, Géraldine (2012), 'Influence of fracture scale heterogeneity on the flow properties of three‐dimensional discrete fracture networks (DFN)', Journal of Geophysical Research: Solid Earth, 117 (B11).
[13]         Erhel, Jocelyne, De Dreuzy, Jean-Raynald, and Poirriez, Baptiste (2009), 'Flow simulation in three-dimensional discrete fracture networks', SIAM Journal on Scientific Computing, 31 (4), 2688-705.
[14]         Mustapha, Hussein and Mustapha, Kassem (2007), 'A new approach to simulating flow in discrete fracture networks with an optimized mesh', SIAM Journal on Scientific Computing, 29 (4), 1439-59.
[15]         Pichot, Géraldine, Erhel, Jocelyne, and de Dreuzy, J-R (2012), 'A generalized mixed hybrid mortar method for solving flow in stochastic discrete fracture networks', SIAM Journal on scientific computing, 34 (1), B86-B105.
[16]         Painter, S and Cvetkovic, Vladimir (2005), 'Upscaling discrete fracture network simulations: An alternative to continuum transport models', Water Resources Research, 41 (2).
[17]         Botros, Farag E, et al. (2008), 'On mapping fracture networks onto continuum', Water resources research, 44 (8).
[18]         Jackson, C Peter, Hoch, Andrew R, and Todman, Steve (2000), 'Self‐consistency of a heterogeneous continuum porous medium representation of a fractured medium', Water Resources Research, 36 (1), 189-202.
[19]         Karimi‐Fard, Mohammad, Gong, Bin, and Durlofsky, Luis J (2006), 'Generation of coarse‐scale continuum flow models from detailed fracture characterizations', Water resources research, 42 (10).
[20]         Priest, Stephen Donald (2012), Discontinuity analysis for rock engineering (Springer Science & Business Media).
[21]         Follin, Sven, et al. (2014), 'A methodology to constrain the parameters of a hydrogeological discrete fracture network model for sparsely fractured crystalline rock, exemplified by data from the proposed high-level nuclear waste repository site at Forsmark, Sweden', Hydrogeology Journal, 22 (2), 313-31.
[22]         Beyabanaki, S Amir Reza, et al. (2009), 'A coupling model of 3-D discontinuous deformation analysis (3-D DDA) and finite element method', AJSE, 34 (2B), 107-19.
[23]         Goodman, Richard E, Taylor, Robert L, and Brekke, Tor L (1968), 'A model for the mechanics of jointed rocks', Journal of Soil Mechanics & Foundations Div.
[24]         Noorishad, J, Ayatollahi, MS, and Witherspoon, PA (1982), 'A finite-element method for coupled stress and fluid flow analysis in fractured rock masses', International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts (19: Elsevier), 185-93.
[25]         Elsworth, D (1986), 'A hybrid boundary element‐finite element analysis procedure for fluid flow simulation in fractured rock masses', International journal for numerical and analytical methods in geomechanics, 10 (6), 569-84.
[26]         Carpenter, Chris (2015), 'A Practical Simulation Method Capturing Complex Hydraulic-Fracturing Physics', Journal of Petroleum Technology, 67 (10), 81-83.
[27]         Minkoff, Susan E, et al. (2003), 'Coupled fluid flow and geomechanical deformation modeling', Journal of Petroleum Science and Engineering, 38 (1), 37-56.
[28]         Noorishad, J, Tsang, Chin-Fu, and Witherspoon, PA (1992), 'Theoretical and field studies of coupled hydromechanical behaviour of fractured rocks—1. Development and verification of a numerical simulator', International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts (29: Elsevier), 401-09.
[29]         Rutqvist, J, et al. (1992), 'Theoretical and field studies of coupled hydromechanical behaviour of fractured rocks—2. Field experiment and modelling', International journal of rock mechanics and mining sciences & geomechanics abstracts (29: Elsevier), 411-19.
[30]         Zhao, Zhihong, et al. (2013), 'Impact of stress on solute transport in a fracture network: a comparison study', Journal of Rock Mechanics and Geotechnical Engineering, 5 (2), 110-23.
[31]         Jing, Lanru, Ma, Yue, and Fang, Zulie (2001), 'Modeling of fluid flow and solid deformation for fractured rocks with discontinuous deformation analysis (DDA) method', International Journal of Rock Mechanics and Mining Sciences, 38 (3), 343-55.
[32]         Min, Ki-Bok, et al. (2004), 'Stress-dependent permeability of fractured rock masses: a numerical study', International Journal of Rock Mechanics and Mining Sciences, 41 (7), 1191-210.
[33]         Latham, John-Paul, et al. (2013), 'Modelling stress-dependent permeability in fractured rock including effects of propagating and bending fractures', International Journal of Rock Mechanics and Mining Sciences, 57, 100-12.
[34]         Lei, Qinghua, et al. (2017), 'Polyaxial stress-dependent permeability of a three-dimensional fractured rock layer', Hydrogeology Journal, 1-12.
[35]         Parashar, Rishi and Reeves, Donald M (2012), 'On iterative techniques for computing flow in large two-dimensional discrete fracture networks', Journal of computational and applied mathematics, 236 (18), 4712-24.
[36]         Meyers, Anthony Tony G and Priest, Stephen D (2000), 'Generating discontinuity orientation data for use in probabilistic models for modelling excavations in rock', ISRM International Symposium (International Society for Rock Mechanics).
[37]         Vermilye, Jan M and Scholz, Christopher H (1995), 'Relation between vein length and aperture', Journal of structural geology, 17 (3), 423-34.
[38]         Jing, Lanru (2003), 'A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering', International Journal of Rock Mechanics and Mining Sciences, 40 (3), 283-353.
[39]         Monteagudo, JEP and Firoozabadi, Abbas (2004), 'Control‐volume method for numerical simulation of two‐phase immiscible flow in two‐and three‐dimensional discrete‐fractured media', Water resources research, 40 (7).
[40]         Baca, RG, Arnett, RC, and Langford, DW (1984), 'Modelling fluid flow in fractured‐porous rock masses by finite‐element techniques', International Journal for Numerical Methods in Fluids, 4 (4), 337-48.
[41]         Koudina, N, et al. (1998), 'Permeability of three-dimensional fracture networks', Physical Review E, 57 (4), 4466.
[42]         Saad, Yousef (2003), Iterative methods for sparse linear systems (SIAM).
[43]         Abe, Kuniyoshi and Sleijpen, Gerard LG (2013), 'Solving linear equations with a stabilized GPBiCG method', Applied Numerical Mathematics, 67, 4-16.
[44]         Yeung, Man-Chung and Chan, Tony F (1999), 'ML (k) BiCGSTAB: A BiCGSTAB variant based on multiple Lanczos starting vectors', SIAM Journal on Scientific Computing, 21 (4), 1263-90.
[45]         Qing-bo, Li, Ping, Zhou, and Hui-ling, Sun (2010), 'Application of the TFQMR method to the analysis of PEC target scattering problem in a lossy half space', Electrical and Control Engineering (ICECE), 2010 International Conference on (IEEE), 3385-88.
[46]         Itasca (2004), 3DEC user’s guide, version 4.0: Itasca Consulting Group Inc.
[47]         Baghbanan, Alireza and Jing, Lanru (2008), 'Stress effects on permeability in a fractured rock mass with correlated fracture length and aperture', International Journal of Rock Mechanics and Mining Sciences, 45 (8), 1320-34.