تقویت کامپوزیت های الیاف- سیمان به کمک افزایش چسبندگی الیاف با استفاده از نانوسلولز باکتریایی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی معدن، دانشگاه صنعتی اصفهان

10.29252/anm.2020.10235.1350

چکیده

مواد پایه سیمانی به دلایلی همچون ارزانی و مقاومت بالا به‌ عنوان یکی از پرمصرف‌ترین مواد در ساخت‌وسازهای عمرانی و به شکل‌های مختلفی همچون ملات، بتن و شاتکریت به ‌کار برده می‌شوند. مقاومت خمشی پایین مواد پایه سیمانی به‌ عنوان یک ضعف ذاتی در این مواد محسوب می‌گردد. با توجه به کاربرد گسترده این ماده، در این پژوهش توانایی استفاده از نانوسلولز حاصل از باکتری به ‌منظور بهبود خصوصیات مکانیکی و فیزیکی ملات سیمانی تحت ارزیابی قرار گرفت. بدین منظور از نانوسلولز باکتریایی در حالت پودر، ژل و پوشش‌دهنده الیاف پلی‌پروپیلن به ‌عنوان تقویت‌کننده در ملات سیمانی استفاده شد. نتایج مقاومت خمشی نشان داد که استفاده از 5/0 درصد وزنی پودر نانوالیاف سلولزی، مقاومت خمشی ملات سیمان را تا 103 درصد نسبت به نمونه شاهد افزایش می‌دهد. همچنین نمونه‌های حاوی الیاف پلی‌پروپیلن تقویت‌شده با نانوسلولز باکتریایی نسبت به نمونه‌های حاوی پلی‌پروپیلن ساده، مقاومت فشاری و خمشی را بهبود داد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Strengthening Fiber-Cement Composites by Increasing Fiber Adhesion Using Bacterial Nanocellulose

نویسندگان [English]

  • Mohammad Amir Akhlaghi
  • Raheb Bagherpour
1- Dept. of Mining, Isfahan University of Technology, Isfahan, Iran
چکیده [English]

Summary
The cement-based material is a strong and relatively cheap construction material and is therefore presently the most used construction material worldwide. This material is used as a mortar, concrete or shotcrete. Low tensile strength is an unavoidable and inherent weakness of most cement-based construction materials. Considering the wide-ranging applications of these materials, in this study, the potential of bacterial nano-cellulose on mechanical and physical properties of cement pastes was evaluated. For this purpose, the potential of bacterial nano-cellulose (BNC) as powder, gel, and coated onto Polypropylene fiber as a reinforcement in cement materials was investigated. The results of the flexural strength test showed, up to 103% increase in flexural strength of specimens containing 0.5 wt.% BNC powder compared to control specimens. In addition, specimens containing BNC-coated fibers showed improvement in compressive and flexural strength in comparison with normal fiber mortal specimens.
 
Introduction
Cement-based materials, such as concrete, are the most consumable substance after water and make up most of the construction environments such as bridges, dams, skyscrapers, roads, and apartments. In addition, the concrete is a heavyweight and brittle composite with a lower flexural and tensile strength compared to its compressive strength. To prevent crack expansion, the use of synthetic fibers, such as polypropylene has attracted the attention of researchers due to their high performance in concrete.
 
Methodology and Approaches
The aim of the present study is to peruse the effect of the bacterial nano-cellulose (BNC), produced by Gluconacetobacter xylinus microorganism, directly and indirectly (as a polypropylene fiber coating) in the preparation of cement mortar samples with different ages. In the direct procedure, bacterial nano-cellulose was added to mixing water in different percentages and in the indirect method the cement mortar samples made with plain polypropylene fibers and polypropylene fibers treatment with BNCs. The effect of both approaches on flexural strength, compressive strength, and water absorption of the resulting mortar was investigated.
 
Results and Conclusions
Results indicated that samples containing BNC gel and powder enhanced mechanical properties. However, BNC-gel indicated inferior properties compared to powder. Also, BNC-gel and powder decrease the water absorption of cement mortar. It was found that coating the polypropylene fibers with BNC improves the performance of these fibers in the cement composite due to the increase of the interfacial adhesion between the cement matrix and fibers. The results give clear evidence supporting the utility of BNC for enhancing the durability of cement paste.

کلیدواژه‌ها [English]

  • Cement-mortar
  • Bacterial nano-cellulose
  • Polypropylene fiber
  • Flexural strength

بتن به دلایلی همچون ارزانی، در دسترس بودن و راحتی ساخت به‌عنوان رایج‌ترین ماده؛ در ساخت‌وسازها استفاده‌شده است و طراحی آن تقریباً تمامی سیمان تولیدشده در جهان را به خود اختصاص می‌دهد[1، 2]. بتن یک ماده کامپوزیتی ترد است که استحکام خمشی و کششی پایینی در مقایسه با استحکام فشاریش دارد[3، 4]. کامپوزیت‌ها به ‌طور کلی یا از دو فاز مخلوط بتن و تقویت‌کننده و یا دارای فاز سومی به نام فاز میانی/ سطح مشترک هستند که مابین مخلوط بتن و تقویت‌کننده قرار دارند و عمل انتقال نیرو را انجام می‌دهند؛ اخیراً در این فاز با توجه به خصوصیات مخلوط بتن، از موادی استفاده‌شده که سبب افزایش استحکام کامپوزیت می‌شود[5]. بتن تازه توسط انقباض پلاستیک به خصوص تحت شرایط محیطی دچار ترک سطحی شده و این ترک گسترش پیداکرده و عمل تخریب را سرعت می‌بخشد. عملیات‌ ترمیم بتن بسیار هزینه‌بر بوده؛ به همین دلیل توجه پژوهشگران را برای افزایش خواص مقاومتی به خود جلب کرده است[3، 4]. بنابراین، بتن سنتی نمی‌تواند نیازهای ساخت‌وسازهای امروزی را برآورده کند، از این‌ رو مهندسان و پژوهشگران به دنبال تولید بتن‌هایی بادوام و کارایی بالا هستند. پیشرفت مواد افزودنی بتن طی چند دهه گذشته، فناوری بتن را به ‌طور قابل‌توجهی بهبود بخشیده است [6، 7]. روش‌های مختلفی برای غلبه بر نقایص بتن معمولی توسط بسیاری از پژوهشگران معرفی‌شده است. به ‌عنوان‌ مثال افزودن الیاف به مخلوط بتن به‌ عنوان راهی برای افزایش ظرفیت جذب انرژی و مقاومت در برابر ترک‌خوردگی بتن ساده شناخته‌شده است. تأثیر الیاف روی رفتار مواد شکننده از دو نظر‌ بررسی ‌شده است؛ کنترل انتشار ترک و افزایش فشار نهایی. نقش الیاف بستگی به حجم، نسبت ابعاد، قدرت و پیوند آن با مخلوط بتن دارد [8، 9]. علاوه بر بهبود استحکام خمشی و کششی بتن؛ حالت شکست آن نیز، از ترد به شبه نرم تغییر می‌کند[10].

[1]           Hasan-Nattaj, F. and Nematzadeh, M., (2017), The effect of forta-ferro and steel fibers on mechanical properties of high-strength concrete with and without silica fume and nano-silica, Construction and Building Materials, 137: pp. 557-572.
[2]           Fallah, S. and Nematzadeh, M., (2017), Mechanical properties and durability of high-strength concrete containing macro-polymeric and polypropylene fibers with nano-silica and silica fume, Construction and Building Materials, 132: pp. 170-187.
[3]           Yao, W. and Zhong, W., (2007), Effect of polypropylene fibers on the long-term tensile strength of concrete, Journal of Wuhan University of Technology-Mater. Sci. Ed., 22(1): pp. 52-55.
[4]           Qi, C., Weiss, J. and Olek, J., (2003), Characterization of plastic shrinkage cracking in fiber reinforced concrete using image analysis and a modified Weibull function, Materials and Structures, 36(6): pp. 386-395.
[5]           Shubhra, Q.T., Alam, A. and Quaiyyum, M., (2013), Mechanical properties of polypropylene composites: A review, Journal of thermoplastic composite materials, 26(3): pp. 362-391.
[6]           Ma, Q. and Zhu, Y., (2017), Experimental research on the microstructure and compressive and tensile properties of nano-SiO2 concrete containing basalt fibers, Underground Space.
[7]           Li, J., Wu, C. and Liu, Z.-X., (2017), Comparative evaluation of steel wire mesh, steel fibre and high performance polyethylene fibre reinforced concrete slabs in blast tests, Thin-Walled Structures.
[8]           Yoo, D.-Y. and Banthia, N., (2017), Mechanical and structural behaviors of ultra-high-performance fiber-reinforced concrete subjected to impact and blast, Construction and Building Materials, 149: pp. 416-431.
[9]           Ferro, G., Tulliani, J.M., Jagdale, P. and Restuccia, L., (2014), New Concepts for Next Generation of High Performance Concretes, Procedia Materials Science, 3: pp. 1760-1766.
[10]         Singh, S., Shukla, A. and Brown, R., (2004), Pullout behavior of polypropylene fibers from cementitious matrix, Cement and Concrete Research, 34(10): pp. 1919-1925.
[11]         Romualdi, J. and Batson, G.J.J.A.I., (1963), Mechanics of crack arrest in concrete beam with closely spaced reinforcement, 60: pp. 775-789.
[12]         Zollo, R.F., (1997), Fiber-reinforced concrete: an overview after 30 years of development, Cement and Concrete Composites, 19(2): pp. 107-122.
[13]         Sedan, D., Pagnoux, C., Smith, A. and Chotard, T., (2008), Mechanical properties of hemp fibre reinforced cement: Influence of the fibre/matrix interaction, Journal of the European Ceramic Society, 28(1): pp. 183-192.
[14]         Pakravan, H , Jamshidi, M., Latifi, M. and Neshastehriz, M., (2011), Application of polypropylene nonwoven fabrics for cement composites reinforcement.
[15]         Singh, S., Singh, A. and Bajaj, V., (2010), Strength and flexural toughness of concrete reinforced with steel-polypropylene hybrid fibres.
[16]         Behfarnia, K. and Behravan, A., (2014), Application of high performance polypropylene fibers in concrete lining of water tunnels, Materials & Design, 55(Supplement C): pp. 274-279.
[17]         Hashemi, S. and MirzaeiMoghadamb, I., (2014), Influence of Nano-silica and Polypropylene Fibers on Bond Strength of Reinforcement and Structural Lightweight Concrete, polymer, 900: pp. 6-18mm.
[18]         Kalhori, H. and Bagherpour, R., (2017), Application of carbonate precipitating bacteria for improving properties and repairing cracks of shotcrete, Construction and Building Materials, 148(Supplement C): pp. 249-260.
[19]         Lee, K.-Y., Tammelin, T., Schulfter, K., Kiiskinen, H., Samela, J. and Bismarck, A., (2012), High Performance Cellulose Nanocomposites: Comparing the Reinforcing Ability of Bacterial Cellulose and Nanofibrillated Cellulose, ACS Applied Materials & Interfaces, 4(8): pp. 4078-4086.
[20]         Keshk, S.M., (2014), Bacterial cellulose production and its industrial applications, Journal of Bioprocessing & Biotechniques, 4(2): pp. 1.
[21]         Mohammadkazemi, F., Doosthoseini, K., Ganjian, E. and Azin, M., (2015), Manufacturing of bacterial nano-cellulose reinforced fiber−cement composites, Construction and Building Materials, 101(Part 1): pp. 958-964.
[22]         Metaxa, Z., Konsta-Gdoutos, M. and Shah, S., (2010), Mechanical properties and nanostructure of cement-based materials reinforced with carbon nanofibers and polyvinyl alcohol (PVA) microfibers, Special Publication, 270: pp. 115-124.
[23]         Onuaguluchi, O., Panesar, D.K. and Sain, M., (2014), Properties of nanofibre reinforced cement composites, Construction and Building Materials, 63(Supplement C): pp. 119-124.
[24]         Hisseine, O.A., Omran, A.F. and Tagnit-Hamou, A., (2018), Influence of Cellulose Filaments on Cement Paste and Concrete, Journal of Materials in Civil Engineering, 30(6): pp. 04018109.
[25]         Metaxa, Z.S., Seo, J.-W.T., Konsta-Gdoutos, M.S., Hersam, M.C. and Shah, S.P., (2012), Highly concentrated carbon nanotube admixture for nano-fiber reinforced cementitious materials, Cement and Concrete Composites, 34(5): pp. 612-617.
[26]         Peters, S., Rushing, T., Landis, E. and Cummins, T., (2010), Nanocellulose and microcellulose fibers for concrete, Transportation Research Record: Journal of the Transportation Research Board,(2142): pp. 25-28.
[27]         Buch, N., Rehman, O. and Hiller, J., (1999), Impact of processed cellulose fibers on portland cement concrete properties, Transportation Research Record: Journal of the Transportation Research Board,(1668): pp. 72-80.
[28]         Kutcharlapati, S., Singh, S. and Rajamane, N. Influence of Nano Cellulose Fibres on Portland Cement Matrix. in National Conference on Advanced materials and Characterization", VIT, Vellore, July23-25 pp. 2008.
[29]         Cengiz, A., Kaya, M. and Pekel Bayramgil, N., (2017), Flexural stress enhancement of concrete by incorporation of algal cellulose nanofibers, Construction and Building Materials, 149(Supplement C): pp. 289-295.
[30]         ASTM-C348, Test method for flexural strength of hydraulic mortar. Annual Book of ASTM Standards, 401.
[31]         Mohammadkazemi, F., Doosthoseini, K. and Azin, M., (2015), Effect of ethanol and medium on bacterial cellulose (BC) production by Gluconacetobacter xylinus (PTCC 1734), Cellul. Chem. Technol, 49(5-6): pp. 455-462.
[32]         Siti, M., Mohammad, S., Abd.Rahman, N., Sahaid, M., Khalil, S., Rozaimah, S. and Abdullah, S., (2014), An Overview of Biocellulose Production Using Acetobacter xylinum Culture. Vol. 8. 307-313.
[33]         Vandamme, E., De Baets, S., Vanbaelen, A., Joris, K. and De Wulf, P., (1998), Improved production of bacterial cellulose and its application potential, Polymer Degradation and Stability, 59(1-3): pp. 93-99.
[34]         Mohammad, S.M., Rahman, N.A., Khalil, M.S. and Abdullah, S.R.S., (2014), An overview of biocellulose production using acetobacter xylinum culture, Advances in Biological Research, 8(6): pp. 307-313.
[35]         ASTM-C349, Standard Test Method for Compressive Strength of Hydraulic-Cement Mortars (Using Portions of Prisms Broken in Flexure).
[36]         ASTM-642-9 ,(1997), Standard Test Method for Density, Absorption, and Voids in Hardened Concrete.
[37]         Barr, B.I.G., Liu, K. and Dowers, R.C., (1982), A toughness index to measure the energy absorption of fibre reinforced concrete, International Journal of Cement Composites and Lightweight Concrete, 4(4): pp. 221-227.