مقایسه طبقه بندی کانسنگ و باطله براساس نتایج حاصل از روش‌های لاگ کریجینگ و شرطی سازی یکنواخت محلی (LUC)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد فرآوری مواد معدنی، کارشناس طراحی و پروژه معدن، مجتمع مس میدوک، شرکت ملی صنایع مس ایران

2 دانشیار، گروه مهندسی معدن، دانشکده فنی و مهندسی، دانشگاه کاشان

چکیده

درشرایطی که فاصله داری داده­ها در مقایسه با ابعاد بلوک مورد تخمین بزرگ باشد استفاده از تکنیک­های تخمین مبتنی بر رگرسیون خطی برای مدلسازی عیار بلوک­های کوچک نامناسب است. برای غلبه بر این مشکل، از روشی جدید تحت عنوان شرطی سازی یکنواخت محلی (LUC) که نتیجه توسعه روش شرطی سازی یکنواخت (UC) است می­توان استفاده نمود. در این پژوهش کاربرد این روش برای تفکیک واحدهای استخراج انتخابی به باطله و ماده معدنی براساس عیار حد 2/0 درصد در معدن مس میدوک مورد بررسی و با نتایج حاصل از روش متداول تخمین مقایسه شده است. براساس چالهای انفجاری در معدن برای دو پنل استخراجی 2450 و 2465 نتایج نشان داد که از مجموع کل بلوک ها 4 درصد باطله و 96 درصد کانسنگ می باشد.  بنابراین درصد تغییرات کانسنگ جهت نتیجه گیری مد نظر قرار گرفت. برای روش لاگ کریجینگ،  در این دو پهنه 49 درصد موارد تفکیک ماده معدنی با خروجی کنترل عیار تطابق دارد در حالیکه در 51 درصد موارد ماده معدنی به صورت باطله تفکیک شده است. همچنین براساس خروجی­های روش شرطی سازی یکنواخت محلی در این دو پهنه 98 درصد رده بندی ماده معدنی با خروجی کنترل عیار تطابق داشته و 2 درصد تفکیک ماده معدنی به عنوان باطله تفکیک شده است. بنابراین حتی با فرض یکسان دانستن هزینه های ناشی از خطای کم رده بندی و بیش رده بندی، روش شرطی سازی یکنواخت محلی از مطلوبیت بیشتری برخوردار است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparison of ore and tailings classification based on the results of ordinary erosion methods and local uniform conditioning

نویسندگان [English]

  • Arash Taherinia 1
  • Saeed Soltani Mohammadi 2
1 Master of Science in mineral processing engineering, Mine Design Supervisor, Miduk copper Complex
2 Associate professor, Mining Engineering Department, Kashan University
چکیده [English]

Summary
In this research, the application of localized uniform conditioning (LUC) method for SMU classification into waste and ore based on 0.2% cutoff grade has been compared with the conventional estimation method in the Miduk copper mine. Based on the blast holes, for the two extraction panels. Finally, even assuming the same level of cost due to under-estimation and over-estimation, the LUC method is more desirable than Log-kriging.
 
Introduction
In the cases of the borehole data have large grid compared with the dimensions of the blocks, using the estimation techniques based on linear regression for modeling small blocks are. To solve this problem, Abzalov in 2006 introduced a new method of LUC which was result of a series of corrections on uniform conditioning (UC). In this method, after calculating the grade distribution functions for large panels, first, based on the uniform conditioning method, the large panel is divided into small blocks according to the increase of grade; small blocks located on the panels are ranked. This method is able to present the grade distribution functions for large panels based on UC method, and also can localized results of UC models.
 
Methodology and Approaches
In this research, we used Log-kriging and LUC techniques in order to classify waste and ore materials. The dimensions of the SMU units were chosen as 5×5×15 meters. Then, using Log-kriging and LUC methods the grade of each SMU blocks in the block model was estimated. Then, according to the 0.2% cutoff grade, the SMU was divided into waste and ore. The best way to compare these two methods is to compare them with the output of the ore control unit. According to the short distance between blast holes, the separation of the ore control unit was considered as real data. Based on this data obtained from the ore control unit, a block model was prepared and separation of waste and ore blocks was done. Then, the results of the separation based on the LUC, Log-kriging and blast hole model output were compared.
 
Results and Conclusions
Based on the blast holes, for the two extraction panels, 2450 and 2465, their results showed that the total blocks were separated to 4% waste and 96% of the ore; therefore, the ore percentage changes were considered for the conclusion. For the method of Log-kriging, in these two panels, 49% of the separation of the ore is matched with the ore control output, while in the 51% of the cases the ore was classified as waste. Also, according to the outputs of the LUC method, in these two benches, 98% of the classification of the ore was matched to the ore control output, and 2% of the separation of the ore was classified as waste. Therefore, even assuming the same level of cost due to under estimation and over estimation, the LUC method is more desirable.

کلیدواژه‌ها [English]

  • Ore and Waste Classification
  • Block Model
  • LUC
  • Exploitation Model
  • Miduk Copper Complex

 1- مقدمه

در زمین آمار، نامناسب بودن روش‌های تخمین بر پایه رگرسیون خطی در شرایطی که فاصله نمونه‌های عیاری در مقایسه با ابعاد بلوک تخمینی زیاد باشد، به عنوان یک اصل پذیرفته شده‌است [1-3]. کریجینگ معمولی (یکی از تخمینگرهای خطی) به عنوان یکی از روش‌های معمول تخمین ذخیره [4]، زمانی که فاصله بین نمونه‌ها نسبت به ابعاد بلوک زیاد باشد باعث نرم‌شدگی در گزارش خروجی ذخیره قابل استحصال می‌شود [1، 2، 5]. ماده معدنی که عیار آن بیش از عیار حد بوده و قابل استخراج باشد، به‌عنوان ذخیره قابل استحصال تعریف می‌شود [6]. دشوار ترین مرحله ارزیابی ذخیره، محاسبه ذخیره قابل استحصال براساس گمانه‌هایی با تعداد محدود و فاصله‌داری زیاد می‌باشد [7].

برای بررسی‌های فنی و اقتصادی در پروژه‌های معدنکاری بلوک‌های بزرگ تخمین زده شده (پلن‌ها) با فاصله‌داری زیاد داده‌های تعریف شده قابل اتکا نیست. زیرا نیاز به تخمین تناژ و عیار بخشی از کانی‌زایی واقع در واحد معدنکاری مورد نظر که به عنوان ماده‌معدنی شناخته شده است، دارد. در زمین‌ آمار، این فرآیند به عنوان تخمین ذخیره قابل استحصال در پایه v شناخته می‌شود که بلوک با ابعاد v بیانگر کوچکترین واحد معدنکاری انتخابی است (SMU) [8]. این روش تخمین، بدون استفاده از موقعیت مکانی، قسمتی از ذخیره که از لحاظ اقتصادی قابل استحصال است را ارائه می دهد. روش فوق تناژ و عیار ذخیره قابل استحصال را براساس یک روش زمین آماری غیرخطی تخمین زده [9] که رابطه تناژ - عیار متوسط واحد معدنکاری با ابعاد v را براساس توزیع تجربی نمونه‌های موجود محاسبه می‌کند [9]. روش شرطی‌سازی یکنواخت [10] یکی از این روش‌هایی است که معمولا در معدنکاری برای مدل‌سازی منابع قابل استحصال استفاده می‌شود [11-14].

[1]                 Armstrong, M., & Champigny, N. (1989), "A study on kriging small blocks.", CIM BULLETIN, 82(923),.  128-133.‏
[2]                 Ravenscroft, P. J., & Armstrong, M. (1990, September), "Kriging of block models–the dangers re-emphasised." In proceedings of APCOM XXII, (pp. 17-21).‏
[3]                 Deraisme, J., & Assibey-Bonsu, W. (2012), "Comparative study of localized block simulations and localized uniform conditioning in the multivariate case.", In Geostatistics Oslo 2012 (pp. 309-320). Springer, Dordrecht..
[4]                 Journel, A. G., &Huijbregts, C. J. ‏(1978), "Mining geostatistics", (Vol. 600). London: Academic press.‏
[5]                 Pan, G. (1998), "Smoothing effect, conditional bias and recoverable reserves.", CIM bulletin, 91(1019), 81-86.‏
[6]                 Tercan, A. E. (2004), "Global recoverable reserve estimation by covariance matching constrained kriging.", Energy sources, 26(12), 1177-1185.‏
[7]                 Lipton, I., Gaze, R., Horton, J., &Khosrowshahi, S. (1998), "Practical application of multiple indicator kriging and conditional simulation to recoverable resource estimation for the Halley’s lateritic nickel deposit.", In Proceedings of A 1 Day Symposium, Perth, (pp. 88-105).‏
[8]                 Abzalov, M. Z. (2006), "Localised Uniform Conditioning (LUC): a new approach for direct modelling of small blocks.", Mathematical Geology, 38(4), 393-411.‏
[9]                 Rivoirard, J. (1994), "Introduction to disjunctive kriging and non-linear geostatistics (spatial information systems).", Oxford University Press, Oxford.
[10]              Chiles, J., & Delfiner, P. (1999), "Modelling spatial uncertainty.‏"
[11]              Assibey-Bonsu, W., & Krige, D. G. (1999, October), "Use of direct and indirect distributions of selective mining units for estimation of recoverable resource/reserves for new mining projects.", In Proceedings, APCOM’99 Symposium, Colorado School of Mines, (pp. 239-247).‏
[12]              Krige, D. G., & Assibey-Bonsu, W. (2001), "Valuation of recoverable resources by Kriging, direct condition or simulation.", Computer Applications in the Mineral Industries, 3.
[13]              Abzalov, M. Z., & Humphreys, M. (2002), "Geostatistically assisted domaining of structurally complex mineralisation: method and case studies." In TheAusIMM 2002 conference. (Vol. 150, pp. 345-350).‏
[14]              Abzalov, M. Z., & Humphreys, M. (2002), "Resource estimation of structurally complex and discontinuous mineralization using non-linear geostatistics: case study of a mesothermal gold deposit in Northern Canada.", Exploration and Mining Geology, 11(1-4), 19-29.‏
[15]              Khorram, F., Asghari, O., & Memarian, H. (2017), "Change of support based on modified localized uniform conditioning and direct block multivariate simulation on the Sungun porphyry deposit, Iran." Bollettino di GeofisicaTeorica ed Applicata, 58(2).‏
[16]              Maritz, E. (2016), "A test of the appropriateness of the LUC technique in high-nugget Birimian-style gold deposits." Journal of the Southern African Institute of Mining and Metallurgy, 116(7). 609-619.‏
[17]              Abzalov, M. Z. (2014), "Localized uniform conditioning (LUC): method and application case studies." Journal of the Southern African Institute of Mining and Metallurgy, 114(3), 205-205.‏
[18]              Allard, D. J.-P. Chilès, P. (2013), "Delfiner: Geostatistics: Modeling Spatial Uncertainty."
[19]              Badenhorst, C., O’Connell, S., & Rossi, M. (2017), "New Approach to Recoverable Resource Modelling: The Multivariate Case at Olympic Dam." In Geostatistics Valencia 2016 (pp. 131-149). Springer, Cham.‏
[20]              Maritz, E. (2017), "The appropriateness of the Localised Uniform Conditioning technique for high-nugget Birimian-style gold deposits." (Doctoral dissertation).‏
[21]              Ghaeini, N., Mousakhani, M., Amnieh, H. B., & Jafari, A. (2017), "Prediction of blasting-induced fragmentation in Meydook copper mine using empirical, statistical, and mutual information models." Arabian Journal of Geosciences, 10(18), 409.
[22]              Nasr Esfahani, A.; Baghbanan, A. (2002), "Geological survey of Miduk porphyry copper ore deposit (Kerman)." 6th Iranian Geological Society Conference; Kerman; Iran.
[23]              Pars Olang, (2016), "Report on Miduk Resource Estimation".
[24]              Pars Olang, (2010), "Report on mining-geological mapping".
[25]              Sinclair, A. J., & Blackwell, G. H. (2006), "Applied mineral inventory estimation. Cambridge University Press"
[26]              Assibey-Bonsu, W., Deraisme, J., Garcia, E., Gomez, P., & Rios, H. (2014), "Production reconciliation of a multivariate uniform conditioning technique for mineral resource modelling of a porphyry copper gold deposit." Journal of the Southern African Institute of Mining and Metallurgy, 114(3), iv-v.‏
[27]              Assibey-Bonsu, W., Searra, J., & Aboagye, M. (2015), "The use of indirect distributions of selective mining units for assessment of recoverable mineral resources designed for mine planning at Gold Fields' Tarkwa Mine, Ghana." Journal of the Southern African Institute of Mining and Metallurgy, 115(1), 51-57.‏