[1] Shi, H., Yang, H., Gong, G., & Wang, L. (2011). Determination of the cutter head torque for EPB shield tunneling machine. Automation in Construction, 20, 1087-1095.
[2] Bakhshandeh Amnieh, H., Zamzam, M. S., Moosavi, S. E., & Tarigh Azali, S. (2014). Selection of the most appropriate soil conditioning set in mechanized boring of Tehran metro line 7 tunnel. Tunneling & Underground Space Engineering (TUSE), 2(2), 145-154.
[3] Farmer, I. W., & Glossop, N. H. (1980). Mechanics of disc cutter penetration. Tunnels and Tunnelling International, 12(6), 622-625.
[4] Berke, L., & Hajela, P. (1991). Application of Neural Networks in Structural Optimization. NATO-DFG Advanced Study Institute on optimization of large structural systems, 2, 731-745.
[5] Barton, N. (2000). TBM Tunneling in Jointed and Faulted Rock, Balkema Publishers, Rotterdam.
[6] Sapigni, M., Berti, M., Bethaz, E., Busillo, A. & Cardone, G. (2002). TBM performance estimation using rock mass classifications. International Journal of Rock Mechanics and Mining Sciences, 39, 771-788.
[7] Jahed Armaghani, D., Koopialipoor, M., Marto, A., & Yagiz, S. (2019). Application of several optimization techniques for estimating TBM advance rate in granitic rocks. Journal of Rock Mechanics and Geotechnical Engineering, 11, 779-789.
[8] Faramarzi, L., Kheradmandian, A., & Azhari, A. (2020). Evaluation and optimization of the effective parameters on the shield tbm performance: torque and thrust-using discrete element method (DEM). Geotechnical and Geological Engineering, 38, 2745-2759.
[9] Zhao, J., Gong, Q.M., & Eisensten, Z. (2007). Tunnelling through a frequently changing and mixed ground: A case history in Singapore. Tunnelling and Underground Space Technology, 22, 388-400.
[10] Elbaz K, Shen, S. L., Zhou, A., Yuan, D. J., & Xu, Y. S. (2019). Optimization of EPB Shield Performance with Adaptive Neuro-Fuzzy Inference System and Genetic Algorithm. Applied Sciences, 9(4), 1-17.
[11] Chou, H. S., Yang, C. Y., Hsieha, B. J., & Chang, S. S. (2001). A study of liquefaction related damages on shield tunnels. Tunnelling and Underground Space Technology, 16,185-193.
[12] Ball, R. P. A, Young, D. Y., Isaacson, J., Champa, J., & Gause, C. (2009). Research in soil conditioning for EPB tunneling through difficult soils. In: Rapid excavation and tunneling conference, Las Vegas, USA, 320–333
[13] Zumsteg, R., Plotze, M., & Puzrin, A. M. (2013). Reduction of the clogging potential of clays: new chemical applications and novel quantification approaches. Geotechnique, 63(4), 276-286.
[14] Alavi Gharahbagh, E., Rostami, J., & Talebi, K. (2014). Experimental study of the effect of conditioning on abrasive wear and torque requirement of full face tunneling machines. Tunnelling and Underground Space Technology, 41, 127-136.
[15] Zhao, B., Liu, D., & Jiang, B. (2018). Soil conditioning of waterless sand–pebble stratum in EPB tunnel construction. Geotechnical and Geological Engineering, 36, 2495-2504.
[16] Mohammadi, S. D., Firuzi, M., & Asghari Kaljahi, E. (2016). Geological-geotechnical risk in the use of EPB-TBM, case study: Tabriz Metro, Iran. Bulletin of Engineering Geology and the Environment, 75, 1571-1583.
[17] Centis, S., & Giacomin, G. (2004). EPB tunnelling in highly variable ground–the experience of Oporto Light Metro. Tunnelling and Underground Space Technology, 19, 358.
[18] Carrieri, G., Fornari, E., Guglielmetti, V., & Crova, R. (2006). Torino metro line 1: use of three TBM-EPBs in very coarse grained soil. Tunnelling and Underground Space Technology, 21,274-275.
[19] Song, X., Liu, J., & Guo, W. (2010). A cutter head torque forecast model based on multivariate nonlinear regression for EPB shield tunneling. Proc. Int. Conf. Artif. Intell. Comput. Intell., 104-108.
[20] Toth, A., & Zhao, J. (2013). Evaluation of EPB TBM performance in mixed ground conditions. In: World Tunnel Congress, Switzerland-Geneva, 1149-1156.
[21] Barzegari, G., Uromeihy, A., & Zhao, J. (2014). EPB tunneling challenges in bouldery ground: a new experience on the Tabriz metro line 1, Iran. Bulletin of Engineering Geology and the Environment, 73, 429-440.
[22] Namli, M., & Bilgin, N. (2017). A model to predict daily advance rates of EPB-TBMs in a complex geology in Istanbul. Tunnelling and Underground Space Technology, 62, 43-52.
[23] Avunduk, E., & Copur, H. (2018). Empirical modeling for predicting excavation performance of EPB TBM based on soil properties. Tunnelling and Underground Space Technology, 71, 340-353.
[24] Massinas, S., Prountzopoulos, G. K., Bhardwaj, V., Saxena, A., Clark, J., & Sakellariou, M. G. (2018). Design aspects of under-passing a city’s heritage landmark with EPB machines under low overburden; The case of Chandpole Gate in Jaipur Metro, India. Geotechnical and Geological Engineering, 36, 3683-3705.
[25] Tzamos, S., & Sofianos, A. I., (2006). Extending the Q systems prediction of support in tunnels employing fuzzy logic and extra parameters. International Journal of Rock Mechanics & Mining Sciences, 43(6), 938-949.
[26] Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338-353.
[27] Mamdani, E. H., & Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies, 7(1), 1-13.
[28] Acaroglu, O., Ozdemir, L., & Asbury, B. (2008). A fuzzy logic model to predict specific energy requirement for TBM performance prediction. Tunnelling and Underground Space Technology, 23(5), 600-608.
[29] Wang, Y., & Chen, Y. (2014). A comparison of Mamdani and Sugeno fuzzy inference systems for traffic flow prediction. Journal of computers, 9(1), 12-21.
[30] Bezdek, J. C. (1981). Pattern Recognition with Fuzzy Objective Function Algoritms. Plenum Press, New York.
[31] Imensazen Consultant Engineers Institute (2009-2018). Tunnel Quality Control Reports and Route of Tabriz Metro line 2.
[32] Asgharzadeh Dizaj, M. (2019). Predicting Performance of Tunnel Boring Machine Using Fuzzy Logic Intelligent Method (Case Study: Tabriz Metro line 2), MSc Thesis, Sahand University of Technology.
[33] Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Proceedings of ICNN'95- International Conference on Neural Networks, Perth, Australia.
[34] Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan.
[36] Darbor, M., Faramarzi, L., & Sharifzadeh, M. (2019). Performance assessment of rotary drilling using non-linear multiple regression analysis and multilayer perceptron neural network. Bulletin of Engineering Geology and the Environment, 78(3), 1501-1513.