وارون‌سازی داده‌های لرزه‌ای به روش مهاجرت زمانی معکوس حداقل مربعات بهینه

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، گروه مهندسی معدن، دانشکده فنی و مهندسی، دانشگاه لرستان

چکیده

با توجه به ضعف روش‌های تصویرسازی لرزه‌ای پرتو - مبنا، استفاده از روش‌های تصویرسازی معادله موج - مبنا همانند روش مهاجرت زمانی معکوس (RTM) به عنوان یک جایگزین مناسب در سال‌های اخیر مورد توجه زیادی قرار گرفته است. اما از آنجایی‌که تصویرسازی به روش RTM مستقیم با استفاده از بازسازی میدان‌موج و شرط تصویرسازی همبستگی عرضی انجام می‌شود منجر به تولید پدیده‌های کاذب می‌شود. همین مسئله از چالش‌های عمده استفاده از این روش محسوب می‌شود. از این رو در مقاله حاضر به منظور مرتفع نمودن این مشکل از وارون‌سازی داده‌های لرزه‌ای با ترکیب دو عملگر مدل‌سازی روش RTM و مهاجرت حداقل مربعات برای تولید تصویر زیرسطحی استفاده می‌شود. به‌طوری‌که مهاجرت زمانی معکوس حداقل مربعات (LSRTM) با استفاده از روش تندترین کاهش و در قالب گرادیان معمولی و تطبیقی به‌صورت یک فرآیند تکراری شامل مهاجرت مستقیم و مهاجرت وارون برای حل مسئله حداقل مربعات اجرا می‌شود تا یک مدل عمقی بهتر بر مبنای حداقل مربعات به داده‌های مشاهده‌ای برازش شود. سپس تصاویر مهاجرت‌یافته حاصل از وارون سازی به روش LSRTM با استفاده از دو الگوریتم معرفی شده در تکرار‌های مختلف ارائه و ضمن مقایسه با همدیگر با روش RTMسنتی نیز مقایسه شده‌است. نتایج تصاویر مهاجرت‌یافته نشان از بهبود تصویر در روش LSRTM با رویکرد گرادیان تطبیقی داشته و این مقایسه از جنبه‌های دیگر همانند مقدار خطا، حساسیت به مدل سرعت، نوفه و زمان محاسبات نیز انجام گرفته و نشان‌دهنده نتایج بهتر این روش ‌است. در نهایت میزان نزدیکی نتایج هرکدام از روش‌های فوق به مدل بازتاب‌پذیری واقعی، با هم مقایسه شده و نشان از برتری روش گرادیان تطبیقی دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Seismic data inversion using an optimal least square reverse time migration

نویسنده [English]

  • Farzad Moradpouri
Department of Mining Engineering, Faculty of Engineering, Lorestan University
چکیده [English]

Due to the drawbacks of the beam-based seismic imaging methods, the use of the wavefield-based imaging methods such as reverse-time migration (RTM) as a suitable alternative has been widely used in the recent years. However, as the RTM is implemented using wave field reconstruction and cross-correlation imaging condition, it produces artifacts which is the major challenge of RTM. Therefore, in this paper, the inversion of seismic data is used by integration of RTM modeling operators and least squares migration to produce subsurface image. The least squares reverse time migration (LSRTM) method is implemented using the steepest decent and adaptive gradient methods in an iterative procedure including forward migration and inverse migration to solve the least squares problem. The LSRTM algorithm tries to fit a better depth model to the observed data based on the least-squares. Then the migrated images’ results of LSRTM procedure are presented using the steepest decent and adaptive gradient algorithms in different iterations which compared with each other and with conventional RTM. Finally, the misfit error and also the wavenumber spectra versus normalized amplitude has been compared for the disputed methods.
Summary
In this paper, the inversion of seismic data is used by integration of RTM modeling operators and least squares migration to produce subsurface image. The least squares reverse time migration (LSRTM) method is implemented using the steepest decent and adaptive gradient methods in an iterative procedure including forward migration and demigration to solve the least squares problem.
 
Introduction
There are several methods of seismic migration and the main objective of those is to place the reflectors in their true positions. One way for seismic migration is the algorithms that directly apply imaging conditions; on the other hand, the inversion-based imaging method implemented through different strategies to obtain a better depth model that fits the observed data. One of these inversion methods named least square migration solves the inverse problem through direct migration and demigration. The least squares migration has the main advantage that it can gradually reduce errors caused by initial migration. In this paper, particularly the reverse time migration (RTM) is used as an operator of migration and demigration.  Therefore, two numerical schemes are developed to implement least-squares migration with the reverse time migration method.
 
Methodology and Approaches
The Helmholtz equation is used to derive the forward modeling operators named reverse time migration (RTM) operator with the Born approximation that is donated as linear inversion. Thus, the linear least square reverse time migration (LSRTM) is the inversion procedure to obtain the final image. LSRTM uses the RTM results as the initial reflectivity model and Born modeling to simulate the seismic data. The reflectivity model is updated by calculating the differences between observed and calculated data through the conventional an adaptive gradient. After multiple iterations, the differences are minimized and this is taken to suggest that the final reflectivity model reflects the real subsurface interface.
 
Results and Conclusions
The results indicate that the LSRTM through an adaptive gradient procedure can successfully produce the subsurface migrated image free of artifacts including the steep dip structures during a reasonable computational cost.

کلیدواژه‌ها [English]

  • Seismic imaging
  • Inversion
  • Reverse time migration
  • Demigration
  • Least square
  • Steepest descent

1- مقدمه

مهاجرت یکی از مراحل اصلی پردازش داده‌های لرزه‌ای بوده و هدف اصلی آن تصویر نمودن بازتابنده‌ها در جای واقعی خود و کاهش اثرات ناشی از پراش[i] است. روش‌های مختلفی برای مهاجرت داده‌های لرزه‌ای وجود دارد. الگوریتم‌های مهاجرت عمقی و زمانی مرسوم با استفاده از برون‌یابی میدان‌های موج چشمه و گیرنده و اعمال شرایط تصویرسازی، تصاویر لرزه‌ای را تولید می‌کنند[1]. عدم تطابق کامل بین اصول تصویربرداری ایده‌ال و فیزیک پیچیده در شرایط واقعی دلالت بر آن دارد که همیشه بین خروجی روش‌های مهاجرت و مدل واقعی زمین اختلافاتی وجود دارد. از آنجایی که این اختلاف اجتناب ناپذیر است، یک راه‌حل برای به حداقل رساندن آن، پیشنهاد وارون‌سازی[ii] داده‌های لرزه‌ای برای تصحیح تصویر مهاجرت‌یافته به سمت بازتاب‌پذیری واقعی است. بازتاب‌پذیری[iii] به زبان ساده میزان انرژی بازتابی است که از تفاوت سرعت و چگالی در دو لایه مختلف ناشی می‌شود و بصورت امپدانس صوتی[iv] یا ضریب بازتاب[v] نیز معرفی می‌شود.



[i] Diffraction

[ii] Inversion

[iii] True reflectivity

[iv] Acoustic impedance

[v] Reflection coefficient

 
[1]                 Moradpouri, F. (2019). Presentation a new and efficient imaging condition in reverse time migration Authors, Journal of analytical and numerical methods in mining engineering, 9(20), pp. 81-87.(In Persian)
[2]                 Schuster, G.T. (1993). Least-squares cross-well migration. Society of Exploration Geophysicists, Expanded Abstracts, pp.110-113.
[3]                 Nemeth, T., Wu, C. & Schuster, G.T. (1999). Least-squares migration of incomplete reflection data. Geophysics, 64(1), pp. 208-221.
[4]                 Dong, S., Cai, J., Guo, M., Suh, S., Zhang, Z., Wang, B. & Li, Z. (2012). Least-squares reverse time migration towards true amplitude imaging and improving the resolution. 82nd Annual International Meeting, SEG, Expanded Abstracts, pp. 1-5.
[5]                 Xue, Z., Chen, Y., Fomel, S. & Sun, J. (2016). Seismic imaging of incomplete data and simultaneous-source data using least-squares reverse time migration with shaping regularization. Geophysics, 81, S11-S20.
[6]                 Dai, W. & Schuster, G.T. (2013). Plane-wave least-squares reverse-time migration. Geophysics, 78, S165-S177.
[7]                 Zeng, C., Dong, S. & Wang, B. (2014). Least-squares reverse time migration: inversion-based imaging toward true reflectivity. Lead. Edge 33, 962-968.
[8]                 Luo, S. & Hale, D. (2014). Least-squares migration in the presence of velocity errors. Geophysics, 79, S153-S161.
[9]                 Dutta, G. & Schuster, G.T. (2014). Attenuation compensation for least-squares reverse time migration using the viscoacoustic-wave equation. Geophysics, 79, S251-S262.
[10]              Aldawood, A., Hoteit, I., Zuberi, M., Turkiyyah, G. & Alkhalifah, T. (2015). The possibilities of least-squares migration of internally scattered seismic energy. Geophysics, 80, S93-S101.
[11]              Moradpouri, F., Moradzadeh, A., Pestana, R.C. & Soleimani Monfared, M. (2016). Seismic reverse time migration using a new wave-field extrapolator and a new imaging condition. Acta  Geophysica, 64(5), 1673-1690
[12]              Moradpouri, F., Moradzadeh, A., Pestana, R. C. & Soleimani Monfared, M. (2017). An improvement in RTM method to image steep dip petroleum bearing structures and its superiority to other methods. Journal of Mining & Environment, 8(4), 573-578.
[13]              Cai, X., Liu, Y., & Ren, Z. (2018). Acoustic reverse-time migration using GPU card and POSIX thread based on the adaptive optimal finite-difference scheme and the hybrid absorbing boundary condition. Computers & Geosciences, 115, 42-55.
[14]              Costa, J. C., Medeiros, W. E., Schimmel, M., Santana, F. L., & Schleicher, J. (2018). Reverse time migration using phase crosscorrelation. Geophysics, 83(4), S345-S354.
[15]              Duquet, B., K. J. Marfurt, & Dellinger, J.A. (2000). Kirchhoff modeling, inversion for reflectivity, and subsurface illumination: Geophysics, 65, 1195-1209.
[16]              Hu, J., G. T. Schuster, & Valasek, P.A. (2001). Poststack migration deconvolution: Geophysics, 66, 939-952.
[17]              Yu, J., J. Hu, G. T. Schuster, & Estill, R. (2006). Prestack migration deconvolution: Geophysics, 71, S53-S62.
[18]              Aoki, N., & Schuster G. T. (2009). Fast least-squares migration with a deblurring filter: Geophysics, 74(6), WCA83-WCA93.
[19]              Dai, W., and G. T. Schuster, (2013), Plane-wave least-squares reverse-time migration: Geophysics, 78(4), S 165–S177.
[20]              Wang, Y. and Yang, C. (2010). Accelerating migration deconvolution using a nonmonotone gradient method: Geophysics, 75, S131–S137.
[21]              Guitton, A. (2004). Amplitude and kinematic corrections of migrated images for nonunitary imaging operators: Geophysics, 69, 1017–1024.
[22]              Wong, M., & Biondi, B. (2014). Imaging with multiples using least-squares reverse time migration: The Leading Edge, 33, 970-972.
[23]              Liu, Y., X. Liu, A. Osen, Y. Shao, H. Hu, & Zheng, Y. (2016b). Least squares reverse time migration using controlled-order multiple reflections: Geophysics, 81(5), S347-S357.
[24]              Liu, Q. (2016). Improving the gradient in least-squares reverse time migration. Journal of Geophysics and Engineering, 13(2), pp.172-180.
[25]              Zeng, C., Dong, S., Wu, Z., Ji, J., Armentrout, D. & Wang, B. (2016). Practical Application of Adaptive Least-Squares Reverse Time Migration (LSRTM) to Advance Field Development and Uncover New Reserves in the Subsalt Provinces. AAPG/SEG International Conference & Exhibition, Cancun, Mexico.
[26]              Sun, X.D., Ge, Z.H. and Li, Z.C. (2017). Conjugate gradient and cross-correlation based least-square reverse time migration and its application. Applied Geophysics, 14(3), pp.381-386.
[27]              Liu, X., Liu, Y. & Khan, M. (2018). Fast least-squares reverse time migration of VSP free-surface multiples with dynamic phase-encoding schemes: Geophysics, 83(4), S321.S332.
[28]              Dai, W., Fowler, P., & Schuster, G. T. (2012). Multisource least-squares reverse time migration: Geophysical Prospecting, 60, 681–695.
[29]              Moradpouri, F., Moradzadeh, A., Pestana R. C., Ghaedrahmati, R. & Soleimani Monfared, M. (2017). An improvement in wavefield extrapolation and imaging condition to suppress reverse time migration artifacts. Geophysics, 82, S403–S409.
[30]              Moradpouri, F. (2020). Seismic Wave-Field Propagation Modelling using the Euler Method,  Computational Methods in Engineering, 38(2), 115-123.
[31]              Porsani, M. J., & Oliveira, S. P. (2008). Linearized seismic waveform inversion using a multiple re‐weighted least‐squares method with QR preconditioning. Geophysical prospecting, 56(1), 61-68.
[32]              Versteeg, R. J. (1993). Sensitivity of prestack depth migration to the velocity model. Geophysics, 58(6), 873-882.