توسعه یک روش تحلیلی برای محاسبه معادله منحنی پوش شکست موهر - کولمب

نوع مقاله : مقاله پژوهشی

نویسنده

گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه محقق اردبیلی، اردبیل، ایران

چکیده

اگرچه رفتار مقاومتی سنگ­ها تحت تأثیر حالت تنش سه­بعدی قرار دارد اما به دلیل محدودیت­های موجود در زمینه اجرای آزمایش­های سه محوره واقعی بر روی نمونه­ها، همچنان معیارهای شکست دوبعدی کاربرد گسترده­ای در مکانیک سنگ دارند. معیار موهر - کولمب یکی از پرکاربردترین معیارهای تئوری برای ارزیابی شکست سنگ است. آزمایش­ها نشان می­دهند که رفتار مقاومتی سنگ­ها در دامنه وسیع تنش­های محصورکننده،­ کاملاً غیرخطی است. به دلیل ضعف معیارهای تئوری در برآورد رفتار غیرخطی سنگ­ها، برخی روابط تجربی ارائه‌شده­ است که ارزیابی بهتری از رفتار مکانیکی سنگ­ها تحت حالات مختلف تنش و تغییر شکل فراهم می­آورند؛ اما استفاده آگاهانه از روابط تجربی نسبتاً دشوار است زیرا پارامترهای به‌کاررفته در این معیارها عموماً دارای مفاهیم فیزیکی مشخصی نیستند؛ بنابراین ارائه یک روش­ تحلیلی برای محاسبه دقیق­تر ضابطه معیار شکست که بر مبنای محاسبات ریاضیاتی استوار بوده و از ضرایب یا پارامترهای فیزیکی ملموس استفاده می­کند، می­تواند موجب بهبود عملکرد معیار شکست موهر کولمب برای سنگ­ها شود. در این تحقیق ابتدا با حل دستگاه معادلات عمومی دسته دوایر شکست موهر و محاسبه جواب غیرعادی آن، معادله­ی پوش غیرخطی دوایر شکست سنگ بکر به‌صورت تحلیلی محاسبه‌شده است. در ادامه، به کمک یک کد کامپیوتری، روش جدید در کنار روش خطی کولمب و روش تجربی هوک - براون به‌صورت یک نرم‌افزار کامپیوتری پیکربندی‌شده است؛ به‌طوری‌که امکان کاربرد، اعتبار سنجی و مقایسه نتایج روش­های مختلف به کمک داده­های آزمایشگاهی به‌سادگی فراهم شود. روش ارائه‌شده در این تحقیق ازنظر سادگی محاسبه پارامترهای ورودی، دقت نتایج و ارائه معادله غیرخطی پوش شکست برحسب تنش برشی و تنش عمودی وارد بر صفحه شکست نسبت به روش­های پیشین برتری نسبی دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Development of an analytical method for the calculation of the Mohr-Coulomb failure envelope

نویسنده [English]

  • Seyedahmad Mehrishal
Civil engineering division,, University of Mohaghegh Ardabili, Ardabil, Iran
چکیده [English]

Summary
It is demonstrated that the mechanical behavior of rocks is a function of the 3D stress state. But the limitations in the true-triaxial compression test have resulted in more use of the two-dimensional failure criteria in rock mechanics. Mohr-Coulomb criterion is the most applicable theoretical criterion in rock mechanics but the calculation of the equation of the failure envelope is still the main matter in this regard.
Introduction
The failure criterion of intact rocks is a matter of fundamental importance in rock engineering design and a substantial amount of research on the failure criteria of intact rock has been developed during the past years. Among them all, one of the most significant suggestions was made by Mohr and Coulomb. The major limitation of the Coulomb criterion is that it is a linear criterion and expresses the strength of the rock as a linear function of confining pressure or normal stress. On the other hand, a large amount of experimental observation suggests that Mohr failure envelopes of most of the intact rocks and soils are not linear, particularly under relatively low or extremely high amounts of confining stresses. In addition, difficulties involved in developing a theoretical model which satisfactorily predicts non-linear behavior of intact rocks under different stress conditions led engineers to propose some empirical relationships between principal stresses or between shear and normal stresses at failure. But for practical applications, it is more important, how easily the parameters of a strength criterion can be obtained in the field and whether corresponds to the applied field situation by the specific field conditions which empirical criterion was developed. Then, this article aims to present a simple and accurate analytical procedure for calculating Mohr failure envelop based on at least three triaxial experiment data obtained from core samples.
 
Methodology and Approaches
Finding the equation of the tangent of the general equation of a curve set is a solved problem in mathematic. Then, in rock mechanics, if we consider the system equations of Mohr’s circles as a general differential equation, the unusual answer of this differential equation is the equation of cover curve (or failure envelop) of Mohr circles which is known as failure criterion. In mathematics, the abnormal (or unusual) answer (or solution) of the first-order differential equation is a curve that is tangent to all curves generated from the general equation. Then, by finding a correlation between centers and radius of circles, substituting the parameters and few mathematical calculations the new non-linear Mohr’s failure envelope can be expressed by a parabolic equation.
Results and Conclusions
The proposed theoretical failure criterion in this paper follows Mohr’s hypothesis and is expressed in functional form τ = f (σ). in order to compare the new proposed model by Hoek-Brown and Coulomb linear model a computer code was developed to plot all of these criteria in a same τ-σ coordinate system. The results obtained from the new parabolic Mohr failure envelope have good accordance with the data points presented by the Hoek-Brown failure criterion. It should be noted that the new technic directly results from the failure equation while the Hoek-Brown model only represents the locus of data points of the normal and shear stresses on the failure plane.

کلیدواژه‌ها [English]

  • Non-linear failure envelop
  • rock shear strength
  • Mohr circle’s equation sets

طراحی و اجرای سازه­های سنگی نیازمند آگاهی از آستانه مقاومت سنگ­ها تحت شرایط تنش و تغییر شکل مختلف است. روش معمول برای کسب این آگاهی، استفاده از آزمایش­های استاندارد سه محوره است [1، 2]. سپس با کمک اطلاعات به‌دست‌آمده و با استفاده از معیارهای شکست می­توان رفتار مکانیکی سنگ را تحت شرایط حاکم پیش‌بینی کرد. معیارهای شکست عموماً یا با تنش­های اصلی و یا سایر تبدیلات آن‌ها مثل ثابت­های تنش، تنش‌های عمودی و برشی وارده بر صفحات اکتاهدرال و غیره، بیان می­شوند [3، 4]. رابطه (1) معیار کلی شکست در سنگ­ها را بیان می­کند که در آن σ1، σ2 و σ3 تنش‌های اصلی بوده و ضرایب a نیز مربوط به خواص سنگ هستند.

[1]                 ISRM, (1978) Suggested methods for determining the strength of rock material in triaxial compression: International society for rock mechanics commission on standardization of laboratory and field tests. Pergamon Press Ltd. Int. J. Rock Mech. Min. Sci. & Gcomech. Abstr. Vol. 15. pp. 47-51.
[2]                 ASTM (2015) D7012 Standard Test Method for Compressive strength and elastic moduli of intact rock core specimens under varying states of stress and temperatures. ASTM International, West Conshohocken (USA), p 9.
[3]                 Moshrefi, S., Shahriar, K., Ramezanzadeh, A., & Goshtasbi, K. (2019). New empirical failure criterion for shale. Journal of Mining and Environment, 10(1), 287-304.‏
[4]                 Singh, A., Ayothiraman, R., & Rao, K. S. (2020). Failure Criteria for Isotropic Rocks Using a Smooth Approximation of Modified Mohr–Coulomb Failure Function. Geotechnical and Geological Engineering, 38(4), 4385-4404.‏
[5]                 Coulomb, C. (1776). Surune application des règles maximis et minimis a quelques problèmes de statique, relatives a l’architecture. Acad Sci Paris Mem Math Phys, 7: 343–382.
[6]                 Griffith, A. (1921). The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London, A, 221: 163–198.
[7]                  Ileana, P. (2004). The Application of Griffith’s Theory in Rock Fracture. Annuals of the Faculty of Engineering Hunedoara, Tome Ii, Fasciole.
[8]                  Coulomb, C. (1776). Surune application des règles maximis et minimis a quelques problèmes de statique, relatives a l’architecture. Acad Sci Paris Mem Math Phys, 7: 343–382.
[9]                 Mohr, O. (1900). elche Umstände bedingen die Elastizitätsgrenze und den Bruch eines Materials. Zeit des Ver Deut Ing, 44: 1524–1530.
[10]              Labuz, J., & Zang, A. (2012). Mohr–Coulomb Failure Criterion. Rock Mech Rock Eng, 45(6), 975‐979 DOI 10.1007/s00603‐012‐0281‐7.
[11]              Jaeger, J., & Cook, N. (1979). Fundamentals of Rock Mechanics. 3rd Edn. London: Chapman & Hall, Pp 593.
[12]              Meyer, J., & Labuz, J. (2012). Linear Failure Criteria with Three Principal Stresses. Int J Rock Mech Min Sci, Submitted.
[13]              Paul, B. (1968). Generalized Pyramidal Fracture and Yield Criteria. Int J Solids Struct, 4: 175–196.
[14]              Singh, A., Ayothiraman, R., & Rao, K. S. (2020). Failure Criteria for Isotropic Rocks Using a Smooth Approximation of Modified Mohr–Coulomb Failure Function. Geotechnical and Geological Engineering, 38(4), 4385-4404.‏
[15]              Hoek, E. (2007). Practical Rock Engineering. Course Notes, Hoek Corner: Http://Www.Rocscience.Com.
[16]              Balmer, G. (1952). A general analytical solution for Mohr’s envelope. Am. Soc. Test. Mat., 4(13), 52, 1260-1271.
[17]              Barton, N. (1976). Rock Mechanics Review: The Shear Strength of Rock and Rock Joints. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., (pp. 13, 255–279).
[18]              Singh, M., and Rao, K. (2005). Bearing Capacity of Shallow Foundations in Anisotropic Non-Hoek–Brown Rock Masses. Asce J Geotech Geo-Environ Eng, 131(8): 1014–23.
[19]              Walton, G., Labrie, D., & Alejano, L. R. (2019). On the Residual Strength of Rocks and Rockmasses. Rock Mechanics and Rock Engineering, 52(11), 4821-4833.‏