ارزیابی چالش‌های بهره‌برداری از مخازن گازی غیرمتعارف از دیدگاه ژئومکانیکی

نوع مقاله : مقاله مروری

نویسندگان

1 دانشکده مهندسی نفت و پتروشیمی، دانشگاه حکیم سبزواری، سبزوار، ایران

2 گروه مهندسی شیمی، دانشکده فنی مهندسی، دانشگاه قم، قم، ایران

چکیده

باتوجه به گسترش صنعت نفت و گاز، نیاز روزافزون کشورهای صنعتی به سوخت‌های فسیلی و وابستگی اقتصادی برخی کشورها به این صنعت، بهره‌برداری از منابع هیدروکربنی روزبه‌روز در حال افزایش است. استخراج‌های بی‌رویه و ترس از کاهش این منابع، سمت‌وسوی صنعت را به‌ استفاده از منابع جایگزین یعنی مخازن غیرمتعارف گازی هدایت می‌کند امّا بهره‌برداری از این مخازن با چالش‌هایی ازنظر حفاری و تولید به‌واسطه تراوایی پایین روبه‌رو است. ژئومکانیک دانشی مشترک میان رشته‌های مهندسی مخزن و زمین‌شناسی است که تولید و تزریق پیوسته‌ی نفت و گاز، آن را به بخش مهمی از مطالعات مهندسی مخزن تبدیل می‌کند. ارزیابی ویژگی‌های ژئومکانیکی به‌منظور شناسایی چالش‌ها در مخازن غیرمتعارف هیدروکربنی و طراحی بهینه عملیات شکاف هیدرولیکی برای افزایش ضریب بازیابی از این مخازن، به‌عنوان مهم‌ترین انگیزه در راستای مطالعات در زمینة دانش ژئومکانیک است که در این مطالعه به آن پرداخته شده است. ازآنجاکه ژئومکانیک کلید عملیات شکاف هیدرولیکی برای دستیابی به تولید بهینه از مخازن گازی غیرمتعارف شمرده می‌شود، بررسی جنبه‌های ژئومکانیکی یکی از مهم‌ترین گام‌ها برای هموار ساختن راه بهره‌برداری از این مخازن تلقی می‌شود. پژوهش حاضر به بررسی جامع و نظام‌مند جنبه‌های ژئومکانیکی این مخازن مانند مخازن گاز شیل، ماسه‌‌ای متراکم گازی، هیدرات گازی و تزریقی ‌دی‌اکسید کربن پرداخته و چالش‌های حفاری و شکاف هیدرولیکی آن‌ها ازجمله مچاله شدن لوله جداری و آستری را از دیدگاه ژئومکانیکی موردبحث و بررسی قرار داده و همچنین مطالعات موردی در بررسی ژئومکانیکی میدان‌های گازی مارسلوس، لانگ مکسی، روزنیت، مورتری و مونتنی در کشورهای آمریکا، چین، استرالیا و کانادا موردتوجه قرارگرفته است که نتایج آن در تخمین پارامترهای استاتیک و دینامیک و نیز طراحی شکاف هیدرولیکی مخازن گازی شیلی حائز اهمیت است. نتایج مطالعات نشان می‌دهد که در این مخازن؛ برخلاف مخازن متعارف، دمای سیال حفاری نقش مهم‌تری را نسبت به چگالی آن در پایداری دیواره چاه ایفا می‌کند و منجر به تغییر در ویژگی‌های فیزیکی و کاهش استحکام آن می‌شود. همچنین می‌توان با استفاده از پیش‌بینی نسبت پواسون و تنش‌های اعمالی، ناحیه‌هایی با خطر مچالگی لوله‌جداری را شناسایی نمود و از سوی دیگر در طراحی فرآیند سیمان‌کاری، هر چه میزان گستره فضای خالی در غلاف سیمان کمتر باشد لوله آستری یکپارچگی خود را بهتر حفظ می‌کند. از سوی دیگر بررسی‌ها بیانگر این نکته هستند که نسبت پواسون و مدول یانگ تأثیر بسزایی بر شاخص شکنندگی شیل‌ها و به دنبال آن شاخص شکاف‌پذیری در راستای انتخاب مناسب‌ترین سازند برای عملیات شکاف هیدرولیکی دارند. مطابق بررسی‌های صورت گرفته سازندی با شاخص شکاف‌پذیری برابر با 1 مناسب‌ترین سازند برای این عملیات محسوب می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Assessing the challenges of production from unconventional gas reservoirs from a geomechanical point of view

نویسندگان [English]

  • Shakib Moraseli 1
  • Abbas Hashemizadeh 2
  • Farhood Navaie 1
1 Dept. of Petroleum and Petrochemical Engineering, Hakim Sabzevari University, Sabzevar, Iran
2 Dept. of Chemical Engineering, Faculty of Engineering, Qom University, Qom, Iran
چکیده [English]

Summary
The current research deals with the comprehensive and systematic investigation of the geomechanical aspects of unconventional reservoirs such as shale gas reservoirs, tight gas sandstone reservoirs, gas hydrate reservoirs and carbon dioxide injection reservoirs, and their drilling and hydraulic fracturing challenges, including the casing and liner collapse, have been discussed from the geomechanical point of view. In this article, case studies on the geomechanical investigation of the Marcellus, Long Maxi, Roseneath, Murteree and Montney gas fields in the countries of America, China, Australia, and Canada are also considered that which results are important in estimating static and dynamic parameters as well as designing the hydraulic fracturing in gas shale reservoirs.
 
Introduction
Considering the extent of unconventional gas reservoirs and the exigency of optimal production from these resources, the design of hydraulic fracturing operation according to the geomechanical aspects is the most important step in the exploitation of these resources. Oil and gas sources differ from each other in many aspects, such as the shape of source and reservoir rocks, mechanisms of formation, penetration, distribution and occurrence. Unconventional reservoirs are resources that cannot be exploited economically with conventional resource extraction methods.
 
Methodology and Approaches
Before drilling, the reservoir is in equilibrium, and no special stress causes the reservoir to collapse, but after the drilling operation, stresses are applied to the reservoir as induced stresses, which cause the loss of balance and instability in the wellbore. In this regard, the greater the distance from the center of the well, the stresses will decrease. Knowing the direction of minimum and maximum horizontal stresses helps engineers to predict the possibility of casing collapse.
 
Results and Conclusions
Due to the low permeability of the unconventional gas reservoirs to achieve optimal production from these sources, geomechanical parameters are of particular importance. To increase production from these sources, one of the most widely used operations worldwide is a hydraulic fracture. One of the important components in studying the propagation of hydraulic fissures is the difference in horizontal stresses. According to what has been obtained based on geomechanical studies in Roseneath and Murteree formations, for reservoir rocks with low horizontal stress such as sandstone reservoirs, the fracture pressure of the formation is much lower. However, the shale reservoir with more horizontal stress has more failure pressure and the fracture in these reservoirs has less expansion. On the other hand, studies in the Montney Formation indicate that Poisson's ratio and Young's modulus affect the characteristics of shales such as their fragility. In this regard, a formation with a lower Young's modulus is more difficult to fracture and is not considered a suitable option for hydraulic fracturing operations.

کلیدواژه‌ها [English]

  • Geomechanic
  • Unconventional gas reservoirs
  • Drilling fluid
  • Hydraulic fracturing
  • Casing collapse
[1]     Palmatier, Robert W., Mark B. Houston ,and John Hulland. 2018. "Review articles: purpose, process, and structure." Journal of the Academy of Marketing Science 46 (1):1-5. doi: 10.1007/s11747-017-0563-4.
[2]     Wright, Rick W, Richard A Brand, Warren Dunn ,and Kurt P Spindler. 2007. "How to Write a Systematic Review." Clinical Orthopaedics and Related Research® 455:23-29. doi: 10.1097/BLO.0b013e31802c9098.
[3]     Dong, Z.., S.A.. A. Holditch ,and D.A.. A. McVay. 2013. "Resource Evaluation for Shale Gas Reservoirs." SPE Economics & Management 5 (01):5-16. doi: 10.2118/152066-pa.
[4]     Ma, Y. Zee, W. R. Moore, E. Gomez, W. J. Clark ,and Y. Zhang. 2016. "Chapter 14 - Tight Gas Sandstone Reservoirs, Part 1: Overview and Lithofacies." In Unconventional Oil and Gas Resources Handbook, edited by Y. Zee Ma and Stephen A. Holditch, 405-427. Boston: Gulf Professional Publishing.
[5]     Kissinger, Alexander, Rainer Helmig, Anozie Ebigbo, Holger Class, Torsten Lange, Martin Sauter, Michael Heitfeld, Johannes Klünker ,and Wiebke Jahnke. 2013. "Hydraulic fracturing in unconventional gas reservoirs: risks in the geological system, part 2." Environmental earth sciences 70 (8):3855-3873.
[6]     Law, B. E. ,and J. B. Curtis. 2002. "Introduction to Unconventional Petroleum Systems." AAPG Bulletin 86 (11):1851-1852. doi: 10.1306/61eedda0-173e-11d7-8645000102c1865d.
[7]     McGlade, Christophe, Jamie Speirs ,and Steve Sorrell. 2013. "Unconventional gas – A review of regional and global resource estimates." Energy 55:571-584. doi: https://doi.org/10.1016/j.energy.2013.01.048.
[8]     Sayers, Colin M. ,and Peter M. T. M. Schutjens. 2007. "An introduction to reservoir geomechanics." The Leading Edge 26 (5):597-601. doi: 10.1190/1.2737100.
[9]     Hamid, Osman, Ahmed Omair ,and Pablo Guizada. 2017. "Reservoir Geomechanics in Carbonates." SPE Middle East Oil & Gas Show and Conference.
[10] Nagel, Dr.Neal. 2019. "Geomechanics for unconventionals." OilfieldGeomechanics.
[11] Iferobia, Cajetan C. ,and Maqsood Ahmad. 2020. "A review on the experimental techniques and applications in the geomechanical evaluation of shale gas reservoirs." Journal of Natural Gas Science and Engineering 74:103090. doi: https://doi.org/10.1016/j.jngse.2019.103090.
[12] Fjar, Erling, Rachel M Holt, AM Raaen ,and P Horsrud. 2008. Petroleum related rock mechanics: Elsevier.
[13] Can, Chen, Dong Chenghe ,and Lu Guang. 2013. "The World’s Present Research Situation of Shale Gas." World 8 (8):62-65.
[14] Morley, C. K., C. von Hagke, R. L. Hansberry, A. S. Collins, W. Kanitpanyacharoen ,and R. King. 2017. "Review of major shale-dominated detachment and thrust characteristics in the diagenetic zone: Part I, meso- and macro-scopic scale." Earth-Science Reviews 173:168-228. doi: https://doi.org/10.1016/j.earscirev.2017.07.019.
[15] Zhang, Shuwen, Xuefu Xian, Junping Zhou ,and Liang Zhang. 2017. "Mechanical behaviour of Longmaxi black shale saturated with different fluids: an experimental study." RSC Advances 7 (68):42946-42955. doi: 10.1039/C7RA07179E.
[16] Chopra, Satinder, Ritesh K Sharma, James Keay ,and Kurt J Marfurt. 2012. "Shale gas reservoir characterization workflows." In SEG Technical Program Expanded Abstracts 2012, 1-5. Society of Exploration Geophysicists.
[17] Jarvie, Daniel M, Ronald J Hill, Tim E Ruble ,and Richard M Pollastro. 2007. "Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment." AAPG bulletin 91 (4):475-499.
[18] Uribe-Patiño, J. A., G. A. Alzate-Espinosa ,and A. Arbeláez-Londoño. 2017. "Geomechanical aspects of reservoir thermal alteration: A literature review." Journal of Petroleum Science and Engineering 152:250-266. doi: https://doi.org/10.1016/j.petrol.2017.03.012.
[19] Rafieepour, S., C. Ghotbi ,and M. R. Pishvaie. 2015. "The Effects of Various Parameters on Wellbore Stability During Drilling Through Shale Formations." Petroleum Science and Technology 33 (12):1275-1285. doi: 10.1080/10916466.2011.606253.
[20] Zheng, Herong, Jincai Zhang ,and Yuanchang Qi. 2020. "Geology and geomechanics of hydraulic fracturing in the Marcellus shale gas play and their potential applications to the Fuling shale gas development." Energy Geoscience 1 (1-2):36-46.
[21] Kok, M. V. ,and S. Merey. 2014. "Shale Gas: Current Perspectives and Future Prospects in Turkey and the World." Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 36 (22):2492-2501. doi: 10.1080/15567036.2014.943854.
[22] Zoback, Mark D. 2007. "Reservoir geomechanics: Earth stress and rock mechanics applied to exploration." Production and wellbore stability:449.
[23] Maurer, W.C. 1995. "Recent Advances In Horizontal Drilling." Journal of Canadian Petroleum Technology 34 (09). doi: 10.2118/95-09-02.
[24] Soliman, Mohamed Y, Loyd East ,and David Adams. 2004. "Geomechanics aspects of multiple fracturing of horizontal and vertical wells." SPE International Thermal Operations and Heavy Oil Symposium and Western Regional Meeting.
[25] Holditch, Stephen A. 2006. "Tight Gas Sands." Journal of Petroleum Technology 58 (06):86-93. doi: 10.2118/103356-jpt.
[26] Zhang, Hui, Kaibin Qiu, John Fuller, Guoqing Yin, Fang Yuan ,and Sheng Chen. 2014. "Geomechanical Evaluation Enabled Successful Stimulation of a HPHT Tight Gas Reservoir in Western China."
[27] Moghaddam, Rasoul Nazari, Shokoufeh Aghabozorgi ,and Jalal Foroozesh. 2015. "Numerical Simulation of Gas Production From Tight, Ultratight and Shale Gas Reservoirs: Flow Regimes and Geomechanical Effects."
[28] Clarkson, C. R. R., M. Nobakht, D. Kaviani ,and T. Ertekin. 2012. "Production Analysis of Tight-Gas and Shale-Gas Reservoirs Using the Dynamic-Slippage Concept." SPE Journal 17 (01):230-242. doi: 10.2118/144317-PA.
[29] Cooke, Dennis. 2012. "A brief review of geoscience issues associated with shale gas development in Australia." University of Adelaide/Australian School of Petroleum, and ZDAC Geophysical Technologies, Australia.
[30] Liu, Liping, Zhilei Sun, Lei Zhang, Nengyou WU, Qin Yichao, Zuzhou JIANG, Wei Geng, Hong Cao, Xilin ZHANG ,and Bin Zhai. 2019. "Progress in global gas hydrate development and production as a new energy resource." Acta Geologica Sinica‐English Edition 93 (3):731-755.
[31] Lee, Joo Yong, Byung Jae Ryu, Tae Sup Yun, Jaehyung Lee ,and Gye-Chun Cho. 2011. "Review on the gas hydrate development and production as a new energy resource." KSCE journal of civil engineering 15 (4):689-696.
[32] Liu, Zhiqiang, Yunxiao Lu, Jiuhui Cheng, Qiang Han, Zunjing Hu ,and Linlin Wang. 2019. "Geomechanics involved in gas hydrate recovery." Chinese Journal of Chemical Engineering 27 (9):2099-2106. doi: https://doi.org/10.1016/j.cjche.2019.02.015.
[33] Dvorkin, Jack, Michael B. Helgerud, William F. Waite, Stephen H. Kirby ,and Amos Nur. 2003. "Introduction to Physical Properties and Elasticity Models." In Natural Gas Hydrate: In Oceanic and Permafrost Environments, edited by Michael D. Max, 245-260. Dordrecht: Springer Netherlands.
[34] Lijith, KP, Bhini RC Malagar ,and Devendra Narain Singh. 2019. "A comprehensive review on the geomechanical properties of gas hydrate bearing sediments." Marine and Petroleum Geology 104:270-285.
[35] Vares, Motahareh, Arash Kamran ,and Amirhossein Mohammadi. 2014. "Investigating Natural Gas Production Methods of Gas Hydrate Reservoirs."
[36] Yan, Chuanliang, Xu Ren, Yuanfang Cheng, Benjian Song, Yang Li ,and Wanqing Tian. 2020. "Geomechanical issues in the exploitation of natural gas hydrate." Gondwana Research 81:403-422. doi: https://doi.org/10.1016/j.gr.2019.11.014.
[37] Zhou, Mingliang, Kenichi Soga, Koji Yamamoto ,and Hongwei Huang. 2020. "Geomechanical responses during depressurization of hydrate-bearing sediment formation over a long methane gas production period." Geomechanics for Energy and the Environment 23:100111.
[38] Gutierrex, M ,and RW Lewis. 1998. "The role of geomechanics in reservoir simulation." SPE/ISRM rock mechanics in petroleum engineering.
[39] Seol, Jiwoong ,and Huen Lee. 2013. "Natural gas hydrate as a potential energy resource: From occurrence to production." Korean journal of chemical engineering 30 (4):771-786.
[40] Wang, Lei, Jiafei Zhao, Xiang Sun, Peng Wu, Shi Shen, Tao Liu ,and Yanghui Li. 2021. "Comprehensive review of geomechanical constitutive models of gas hydrate-bearing sediments." Journal of Natural Gas Science and Engineering 88:103755. doi: https://doi.org/10.1016/j.jngse.2020.103755.
[41] Aruffo, C. M., A. Rodriguez-herrera, E. Tenthorey, F. Krzikalla, J. Minton ,and A. Henk. 2014. "Geomechanical modelling to assess fault integrity at the CO2CRC Otway Project, Australia." Australian Journal of Earth Sciences 61 (7):987-1001. doi: 10.1080/08120099.2014.958876.
[42] Ferronato, Massimiliano, Giuseppe Gambolati, Carlo Janna ,and Pietro Teatini. 2010. "Geomechanical issues of anthropogenic CO2 sequestration in exploited gas fields." Energy Conversion and Management 51 (10):1918-1928. doi: https://doi.org/10.1016/j.enconman.2010.02.024.
[43] Pan, Pengzhi, Zhenhua Wu, Xiating Feng ,and Fei Yan. 2016. "Geomechanical modeling of CO2 geological storage: A review." Journal of Rock Mechanics and Geotechnical Engineering 8 (6):936-947.
[44] Rutqvist, Jonny. 2012. "The geomechanics of CO2 storage in deep sedimentary formations." Geotechnical and Geological Engineering 30 (3):525-551.
[45] Orlic, Bogdan. 2016. "Geomechanical effects of CO2 storage in depleted gas reservoirs in the Netherlands: Inferences from feasibility studies and comparison with aquifer storage." Journal of Rock Mechanics and Geotechnical Engineering 8 (6):846-859. doi: https://doi.org/10.1016/j.jrmge.2016.07.003.
[46] Saffou, Eric, Arshad Raza, Raoof Gholami, Leon Croukamp, Walter Romaric Elingou, Jan van Bever Donker, Mimonitu Opuwari, Musa S. D. Manzi ,and Raymond J. Durrheim. 2020. "Geomechanical characterization of CO2 storage sites: A case study from a nearly depleted gas field in the Bredasdorp Basin, South Africa." Journal of Natural Gas Science and Engineering 81:103446. doi: https://doi.org/10.1016/j.jngse.2020.103446.
[47] Shi, Ji-Quan ,and Sevket Durucan. 2009. "A coupled reservoir-geomechanical simulation study of CO2 storage in a nearly depleted natural gas reservoir." Energy Procedia 1 (1):3039-3046. doi: https://doi.org/10.1016/j.egypro.2009.02.082.
[48] White, Adrian J, Martin O Traugott ,and Richard E Swarbrick. 2002. "The use of leak-off tests as means of predicting minimum in-situ stress." Petroleum Geoscience 8 (2):189-193.
[49] Martínez-Martínez, J., D. Benavente ,and M. A. García-del-Cura. 2012. "Comparison of the static and dynamic elastic modulus in carbonate rocks." Bulletin of Engineering Geology and the Environment 71 (2):263-268. doi: 10.1007/s10064-011-0399-y.
[50] Zoback, MD, CA Barton, M Brudy, DA Castillo, Thomas Finkbeiner, BR Grollimund, DB Moos, Pl Peska, CD Ward ,and DJ Wiprut. 2003. "Determination of stress orientation and magnitude in deep wells." International Journal of Rock Mechanics and Mining Sciences 40 (7-8):1049-1076.
[51] Jaeger, John Conrad, Neville GW Cook ,and Robert Zimmerman. 2009. Fundamentals of rock mechanics: John Wiley & Sons.
[52] Lazemi, Hossein Ali ,and Mohammad Reza Eskandari. 2012. "Determining the relationship between uniaxial compressive strength and parameters of point load index, specific gravity and porosity of rock mass by neural network method " Journal of Analytical & Numerical Methods in Mining Engineering 2 (3):70-75 . [ In Persian].
[53] Jin, Guodong, Syed Shujath Ali ,and Ali Abdullah Dhamen. 2016. "Mechanical Anisotropy of Unconventional Shale – Build the Correct Relationship between Static and Dynamic Properties."
[54] Eaton, Ben A. 1972. "The effect of overburden stress on geopressure prediction from well logs." Journal of Petroleum Technology 24 (08):929-934.
[55] Iqbal, Omer, Maqsood Ahmad ,and Askury abd Kadir. 2018. "Effective evaluation of shale gas reservoirs by means of an integrated approach to petrophysics and geomechanics for the optimization of hydraulic fracturing: A case study of the Permian Roseneath and Murteree Shale Gas reservoirs, Cooper Basin, Australia." Journal of Natural Gas Science and Engineering 58:34-58. doi: https://doi.org/10.1016/j.jngse.2018.07.017.
[56] Mohamadian, Nima, Hamzeh Ghorbani, David A. Wood, Mohammad Mehrad, Shadfar Davoodi, Sina Rashidi, Alireza Soleimanian ,and Amirafzal Kiani Shahvand. 2021. "A geomechanical approach to casing collapse prediction in oil and gas wells aided by machine learning." Journal of Petroleum Science and Engineering 196:107811. doi: https://doi.org/10.1016/j.petrol.2020.107811.
[57] Rashidi, Sina, Nima Mohamadian, Hamzeh Ghorbani, David A Wood, Khalil Shahbazi ,and Mehdi Ahmadi Alvar. 2020. "Shear modulus prediction of embedded pressurized salt layers and pinpointing zones at risk of casing collapse in oil and gas wells." Journal of Applied Geophysics 183:104205.
[58] Darbar, Mohammad, Hadi Shakeri ,and Lohrasb Faramarzi. "Laboratory study of the effect of perforation on hydraulic fracturing under triaxial stress conditions by using physical modeling." Journal of Analytical & Numerical Methods in Mining Engineering 9 (20):89-104 . [ In Persian]. doi: 10.29252/anm.2019.10976.1369.
[59] Aadnoy, Bernt ,and Reza Looyeh. 2019. Petroleum rock mechanics: drilling operations and well design: Gulf Professional Publishing.
[60] Ostadhassan, MM. 2013. "Geomechanics and elastic anisotropy of the Bakken Formation." Williston Basin: University of North Dakota:1-185.
[61] Rasouli, Vamegh. 2015. "Geomechanics of Gas Shales." In Fundamentals of Gas Shale Reservoirs, 169-190.
[62] Luo, Shu ,and Mohan Kelkar. 2012. "Infill-Drilling Potential in Tight Gas Reservoirs." Journal of Energy Resources Technology 135 (1). doi: 10.1115/1.4007662.
[63] Abdideh, Mohammad ,and Soheila Hedayati Khah. 2018. "Analytical and numerical study of casing collapse in Iranian oil field." Geotechnical and Geological Engineering 36 (3):1723-1734.
[64] Ashtiyani, Hadi ,and Hassan Amiri Bakhtiyar. 2011. "Prediction and control of casing collapse phenomenon by using geomechanical analysis of formations in one of Iran's oil fields." Scientific journal of Exploration & Production Oil & Gas 74 (74):53 . [ In Persian].
[65] Alruwaili, Khalid, Yanhui Han, Khaqan Khan ,and Abdullah Alyami. 2020. "Geomechanical Analysis of Liner Deformation in Deep Gas Wells."
[66] Hoek, Evert, Carlos Carranza-Torres ,and Brent Corkum. 2002. "Hoek-Brown failure criterion-2002 edition." Proceedings of NARMS-Tac 1 (1):267-273.
[67] Mohammadi, Mehdi ,and Hossein Tavakoli. 2013. "Evaluation of the performance of Hook and Brown criteria in predicting fracture stresses." Journal of Analytical & Numerical Methods in Mining Engineering 2 (4):71-78 . [ In Persian].
[68] Labuz, Joseph ,and Arno Zang. 2012. "Mohr–Coulomb Failure Criterion." Rock Mechanics and Rock Engineering 45. doi: 10.1007/s00603-012-0281-7.
[69] Kamali-Asl, Arash, Ehsan Ghazanfari, Ahmadreza Hedayat ,and Louisa Deering. 2018. "Investigation of static/dynamic moduli and plastic response of shale specimens." International Journal of Rock Mechanics and Mining Sciences 110:231-245. doi: https://doi.org/10.1016/j.ijrmms.2018.08.008.
[70] Villamor Lora, Rafael, Ehsan Ghazanfari ,and Enrique Asanza Izquierdo. 2016. "Geomechanical Characterization of Marcellus Shale." Rock Mechanics and Rock Engineering 49 (9):3403-3424. doi: 10.1007/s00603-016-0955-7.
[71] Gui, Feng, Shanshan Wang, Sanjeev Bordoloi ,and See Hong Ong. 2019. "Understanding the Geomechanical Challenges and Risk Mitigation in Sichuan Shale Gas Drilling, China." International Petroleum Technology Conference.
[72] Gui, Junchuan, Tianshou Ma, Ping Chen, Heyi Yuan ,and Zhaoxue Guo. 2018. "Anisotropic Damage to Hard Brittle Shale with Stress and Hydration Coupling." Energies 11 (4). doi: 10.3390/en11040926.
[73] Hou, Bing, Ce Diao ,and Dandan Li. 2017. "An experimental investigation of geomechanical properties of deep tight gas reservoirs." Journal of Natural Gas Science and Engineering 47:22-33. doi: https://doi.org/10.1016/j.jngse.2017.09.004.
[74] Behnia, Mahmoud, Kamran Gashtasbi, Mohammad Fatehi ,and Aliakbar Golshani. 2012. "The effect of elastic parameters of layers on how to propagate hydraulic fracturing by using discontinuity-displacement method." Journal of Analytical & Numerical Methods in Mining Engineering 2 (3):1-13 . [ In Persian].
[75] Speight, James. 2020. "Chapter 3 - Reservoirs and reservoir fluids." In Shale Oil and Gas Production Processes, edited by James Speight, 139-220. Gulf Professional Publishing.
[76] Vishkai, Mahta, Jingyi Wang, Ron CK Wong, Christopher R Clarkson ,and Ian D Gates. 2017. "Modeling geomechanical properties in the montney formation, Alberta, Canada." International Journal of Rock Mechanics and Mining Sciences 96:94-105.
[77] Jin, Xiaochun, Subhash N Shah, Jean-Claude Roegiers ,and Bo Zhang. 2014. "Fracability evaluation in shale reservoirs-an integrated petrophysics and geomechanics approach." SPE hydraulic fracturing technology conference.
[78] Osorio, Gildardo ,and Cesar Fabian Lopez. 2009. "Geomechanical factors affecting the hydraulic fracturing performance in a geomechanically complex, tectonically active area in Colombia." Latin American and Caribbean Petroleum Engineering Conference.
[79] farzi, Reza, Shahin parchekhari, Vahid Bolandi ,and Habib Porfaraj. 2018. "Study of the stability of the well wall with geomechanical data by continuous wavelet transform method." Scientific journal of Exploration & Production Oil & Gas 153 (153):42-48 [ In Persian].
[80] Zhenzhou, YANG, LIU Fuchen, ZHOU Chun, LI Jiancheng, YANG Peng ,and YAN Songbing. 2018. "Study on the performance of new ultra-high temperature high density oil base mud thinners."  钻井液与完井液 35 (2):35-3.