مروری بر استفاده از تحلیل و پردازش امواج آکوستیک در عملیات حفاری سنگ

نوع مقاله : مقاله مروری

نویسندگان

1 گروه مهندسی معدن، دانشکده فنی و مهندسی، دانشگاه ملایر، همدان، ایران

2 دانشکده مهندسی معدن، دانشگاه صنعتی اصفهان، اصفهان، ایران

چکیده

امروزه با پیشرفت فناوری و توسعه شهرنشینی نیاز به مواد معدنی فلزی و غیرفلزی و سنگ‌های ساختمانی به‌طور روزافزون رو به افزایش است. از طرفی یکی از اصلی‌ترین عملیات در چرخه تولید مواد معدنی، حفاری سنگ‌ها است، بنابراین استفاده از فناوری‌های نوین در این عملیات به منظور بهینه‌سازی عملیات، افزایش تولید و کاهش هزینه‌های عملیات امری بسیار ضروری است. یکی از این فناوری‌های نوین، استفاده از امواج آکوستیک است که کاربرد این روش‌ها افزایش چشمگیری در پروژه‌های حفاری داشته است. در سال‌های اخیر تحقیقات متعددی در زمینه تحلیل و پردازش امواج آکوستیک در حفاری سنگ‌ها انجام شده است که می‌توان این مطالعات را به دو بخش مطالعات در مقیاس آزمایشگاهی و مقیاس صحرایی و واقعی دسته‌بندی نمود. همچنین از این امواج برای اهدافی همچون پیش‌بینی و محاسبه مواردی مانند خواص فیزیکی و مکانیکی سنگ‌ها، رفتار سنجی عملیات مانند رفتار سنجی میزان سایش و تشخیص مانند تشخیص زمان شکستن سرمته های حفاری استفاده شده است. در این مقاله مروری بر مطالعات و تحقیقات انجام شده در زمینه کاربرد پردازش امواج آکوستیک در عملیات حفاری در دو مقیاس آزمایشگاهی و صحرایی انجام شده است و درنهایت مزایا و چالش‌ها و کاربرد تحلیل و پردازش این امواج در عملیات حفاری و مهندسی معدن موردبحث و ارزیابی قرارگرفته است. از بررسی‌های انجام شده می‌توان به این نتیجه رسید که از پردازش امواج آکوستیک در حین عملیات حفاری به‌عنوان یک روش دقیق، غیر مخرب، ارزان و باقابلیت اطمینان بالا برای اهداف مختلفی همچون کاهش هزینه‌های حفاری، بهینه‌سازی عملیات و انتخاب پارامترهای عملیاتی بهینه متناسب با سنگ تحت حفاری بهره برد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A review on application of acoustic signal analysis in rock drilling operation

نویسندگان [English]

  • Mojtaba Yari 1
  • Raheb Bagherpour 2
  • Mehrbod Khoshouei 2
1 Dept. of Mining Engineering, Faculty of Technical and Engineering,, Malayer University, Hamadan, Iran
2 Dept. of Mining Engineering, Isfahan University of Technology, Isfahan, Iran
چکیده [English]

Summary
In this paper, a review of research conducted on the application of acoustic signal processing during drilling operations in both laboratory and field scales has been done and the advantages, challenges and application of analysis and processing of these waves in drilling operations are discussed. From the studies performed, it can be concluded that the processing of acoustic waves during drilling operations is an accurate, non-destructive, inexpensive and reliable method for various purposes such as reducing drilling costs, optimizing operations and parameter selection optimal operational parameters fit to the rock excavation.
Introduction
Rock drilling is one of the main operations in quarrying and mining engineering [1]. Investigation and predicting the physical and mechanical properties of rock is one of the most important activities in various projects of mining engineering, especially drilling operations. The use of acoustic waves in recent years in the form of recording and analysis for various applications, using various techniques has received much attention. Acoustic emission techniques are among the most accurate experiments that can be used to condition monitoring, predict material properties or equipment conditions, such as predicting penetration rates, selecting appropriate drill bits.
Methodology and Approaches
Acoustic signal propagation is one of the outputs of most processes in mining operations that the use of these signals and their processing can be very useful. The general process of processing acoustic signals is that during the process, the sound wave that is produced is recorded by special sound recording devices such as microphones or sound level meters[2]. Then, according to the required processing level, the signal is processed and its characteristics are extracted from the main wave. 
After processing and extracting information from the signal, it can be used for statistical evaluations and modeling for purposes such as predicting and calculating the physical and mechanical characteristics of rocks at any time of drilling [3-5], monitoring the behavior of drilling equipment and drilling bits or detecting phenomena such as drill bit breaking time [6]. So far, these waves have been widely used in laboratory studies and satisfactory results have been obtained [7]. The use of these waves along with the drilling machine as a tool in real operations in the mines can be very helpful in better understanding the drilling conditions and lead to the optimization of drilling operations and reduce drilling costs.
Results and Conclusions
Based on the studies conducted in the application of acoustic emission techniques, it can be concluded that there are various methods and techniques for processing acoustic signals, which can be used to extract features from the time spectrum or frequency domain of signals or correlate these properties with various properties such as physical and mechanical properties of rocks or monitoring the equipment. Applying new methods in acoustic signal processing can greatly contribute to the future of experiments and operations in earth sciences and geotechnics in various fields such as exploration, drilling engineering, material processing, rock mechanics experiments, etc. Most methods of testing, status monitoring and detection become a tool with drilling operations. The use of this technology, in addition to more accurate identification of the type and characteristics of rock or material and other structural features such as joints, faults and rock cavities, can also optimize drilling operations by adjusting drilling operational parameters such as The weights on the bit (WOB) and the rotation speed of the drill bit. In this way, the costs of drilling processes, which are one of the most important parts of various mining operations, can be greatly reduced.

کلیدواژه‌ها [English]

  • drilling
  • acoustic waves
  • signal processing
  • physical and mechanical features of rocks
[1]                 Rivero, A.d., L.L. de Lacalle, and M.L. Penalva, Tool wear detection in dry high-speed milling based upon the analysis of machine internal signals. Mechatronics, 2008. 18(10): p. 627-633.
[2]                 Krúpa, V., et al., Measurement, modeling and prediction of penetration depth in rotary drilling of rocks. Measurement, 2018. 117: p. 165-175.
[3]                 Liptai, R., D. Harris, and C. Tatro, An introduction to acoustic emission, in Acoustic Emission. 1972, ASTM International.
[4]                 Adebayo, B. and J. Akande, Analysis of button bit wear and performance of down-the-hole hammer drill. Ghana Mining Journal, 2015. 15(2): p. 36-41.
[5]                 Phillips, C.L., J.M. Parr, and E.A. Riskin, Signals, systems, and transforms. 2003: Prentice Hall Upper Saddle River.
[6]                 Zborovjan, M., Identification of Minerals from Sound During Drilling. Semestral Project. TU-Kosice, 2002. 6.
[7]                 Zborovjan, M., I. Lesso, and L. Dorcak, Acoustic identification of rocks during drilling process. Journal of Acta Montanistica Slovaca, 2003. 8(4): p. 91-93.
[8]                 Lak, M., Fatehi Marji, M., Yarahmadi Bafghi, A. , Abdollahipour, A. and pourghasemi sagand, M. , Analytical solution of the explosion-induced wave propagation in rock using elastodynamic theory. Analytical and Numerical Methods in Mining Engineering, 2023. 13(34): p. 57-65.
[9]                 Dini, A., Ahmadi, M. and Gastasbi, K. Investigating changes in thermal and mechanical stresses of rock caused by laser drilling in high finite pressure with finite element method. Analytical and numerical methods in mining engineering, 2016. 6(12): p. 47-55.
[10]               Sheng, M., et al., Frequency analysis of multi-sources acoustic emission from high-velocity waterjet rock drilling and its indicator to drilling efficiency. International Journal of Rock Mechanics and Mining Sciences, 2019. 115: p. 137-144.
[11]              Mohseni, M., Atai, M. and Khalo Kakai, R. Effects of blast vibration on unplanned dilution in an underground metal mine. Analytical and numerical methods in mining engineering, 2019. 8(17): p. 77-90.
[12]              Khoshouei, M. and R. Bagherpour, Application of Acoustic Emission (AE) in mining and earth sciences: a review. RGN zbornik, 2019. 47.
[13]              Mokhtarian, M., Eftekhari, M. and Baghbanan, A. The application of principal component analysis in predicting the penetration coefficient of TBM using artificial neural networks. Analytical and numerical methods in mining engineering, 2013. 3(6): p. 33-43.
[14]              Obert, L. and W. Duvall, Use of subaudible noises for prediction of rockbursts II—report of investigation. S Bureau of Mines, Denve, 1941.
[15]                  McNally, G., The prediction of geotechnical rock properties from sonic and neutron logs. Exploration Geophysics, 1990. 21(2): p. 65-71.
[16]              Ward, B., German Creek Mines Rock strength from velocity logs. Unpublished report for Capricorn Coal Management Pty Ltd, 1998.
[17]              Kawasaki, S., et al., An attempt to estimate mechanical properties of rocks using the Equotip hardness tester. Journal of the Japan Society of Engineering Geology, 2002. 43(4): p. 244-248.
[18]              Hatherly, P., Rock strength assessment from geophysical logging. 2002.
[19]              Kumar, B.R., H. Vardhan, and M. Govindaraj, Estimating rock properties using sound level during drilling: field investigation. International Journal of Mining and Mineral Engineering, 2010. 2(3): p. 169-184.
[20]              Kumar, B.R., H. Vardhan, and M. Govindaraj, Sound level produced during rock drilling vis-à-vis rock properties. Engineering geology, 2011. 123(4): p. 333-337.
[21]              Kumar, B.R., H. Vardhan, and M. Govindaraj, Prediction of uniaxial compressive strength, tensile strength and porosity of sedimentary rocks using sound level produced during rotary drilling. Rock mechanics& rock engineering, 2011. 44(5): p. 613-620.
[22]              Gradl, C., A.W. Eustes, and G. Thonhauser, An analysis of noise characteristics of drill bits. Journal of energy resources technology, 2012. 134(1): p. 013103.
[23]              Hasheminasab Zavare, F., Bagherpour, R. Baghbanan, A. and Monjezi, M. First-Order-Second-Moment Analysis of Reliability in Predicting the Rate of Penetration. Analytical and Numerical Methods in Mining Engineering, 2018. 7(14): p. 13-21.
[24]              Byerlee, J., A review of rock mechanics studies in the United States pertinent to earthquake prediction, in Rock Friction and Earthquake Prediction. 1978, Springer. p. 586-602.
[25]              Hardy, H.R., Application of acoustic emission techniques to rock mechanics research, in Acoustic Emission. 1972, ASTM International.
[26]              Marceau, J. and Y. Moji, Application of fracture mechanics testing to process control for adhesive bonding. Document D6–41145, Boeing Commercial Airplane Company, 1973.
[27]              Futó, J. and Ľ. IVANIČOVÁ. L.: Optimization of rock disintegration using the acoustic signal. in Proceedings of International Carpathian Control Conference 2003. 2003. Citeseer.
[28]              Tripathi, R., et al., Monitoring of acoustic emission during the disintegration of rock. Procedia Engineering, 2016. 149: p. 481-488.
[29]              Khoshouei, M., R. Bagherpour, and M.H. Jalalian, Rock Type Identification Using Analysis of the Acoustic Signal Frequency Contents Propagated While Drilling Operation. Geotechnical and Geological Engineering, 2021: p. 1-14.
[30]              Knill, J., J. Franklin, and A. Malone. A study of acoustic emission from stressed rock. in International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 1968. Elsevier.
[31]              Schön, J.H., Physical properties of rocks: Fundamentals and principles of petrophysics. Vol. 65. 2015: Elsevier.
[32]              Jung, S., K. Prisbrey, and G. Wu, Prediction of rock hardness and drillability using acoustic emission signatures during indentation. International Journalof rock mechanics, 1994. 31.
[33]              Miklusova, V., et al., Acoustic signal–new feature in monitoring of rock disintegration process. Contributions to geophysics geodesy, 2006. 36: p. 125-133.
[34]              Leššo, I., et al., New principles of process control in geotechnics by acoustic methods. Metalurgija, 2007. 46(3): p. 165-168.
[35]              Marinescu, I. and D. Axinte, A time–frequency acoustic emission-based monitoring technique to identify workpiece surface malfunctions in milling with multiple teeth cutting simultaneously. International Journal of Machine Tools Manufacture, 2009. 49(1): p. 53-65.
[36]              Kumar, B.R., et al., Artificial neural network model for prediction of rock properties from sound level produced during drilling. Geomechanics Geoengineering, 2013. 8(1): p. 53-61.
[37]              Kumar, B.R., et al., Regression analysis and ANN models to predict rock properties from sound levels produced during drilling. International Journal of Rock Mechanics Mining Sciences, 2013. 58: p. 61-72.
[38]              Kahraman, S., M. Delibalta, and R. Comakli, Noise level measurement test to predict the abrasion resistance of rock aggregates. Fluctuation Noise Letters2013 p. 1350021.
[39]              Karakus, M. and S. Perez, Acoustic emission analysis for rock–bit interactions in impregnated diamond core drilling. International Journal of Rock Mechanics Mining Sciences, 2014. 68: p. 36-43.
[40]              Flegner, P., et al., Measurement and processing of vibro-acoustic signal from the process of rock disintegration by rotary drilling. Measurement, 2014. 56: p. 178-193.
[41]              Qin, M., et al., Analysis of signal characteristics from rock drilling based on vibration and acoustic sensor approaches. Applied Acoustics, 2018. 140: p. 275-282.
[42]              Kong, X., et al., Critical slowing down on acoustic emission characteristics of coal containing methane. Journal of Natural Gas Science Engineering, 2015. 24: p. 156-165.
[43]              Du, F., et al., Investigation on acoustic emission characteristics during deformation and failure of gas-bearing coal-rock combined bodies. Journal of Loss Prevention in the Process Industries, 2018.
[44]              Yari, M. and R. Bagherpour, Implementing Acoustic Frequency Analysis for Development the Novel Model of Determining Geomechanical Features of Igneous Rocks Using Rotary Drilling Device. Geotechnical Geological Engineering, 2018. 36(3): p. 1805-1816.
[45]              Yari, M. and R. Bagherpour, Investigating an innovative model for dimensional sedimentary rock characterization using acoustic frequency analysis during drilling. Rudarsko Geolosko Naftni Zbornik, 2018. 33(2): p. 17-25.
[46]              Yari, M., R. Bagherpour, and M. Khoshouei, Developing a novel model for predicting geomechanical features of carbonate rocks based on acoustic frequency processing during drilling. Bulletin of Engineering Geology and the Environment, 2019. 78(3): p. 1747-1759.
[47]              Liu, M.-K., Y.-H. Tseng, and M.-Q. Tran, Tool wear monitoring and prediction based on sound signal. The International Journal of Advanced Manufacturing Technology, 2019. 103(9): p. 3361-3373.
[48]              Khoshouei, M., et al., A New Look at Hard Rock Abrasivity Evaluation Using Acoustic Emission Technique (AET). Rock Mechanics and Rock Engineering, 2022. 55(4): p. 2425-2443.