[1] L. Faramarzi, H. Rezaee, Testing the effects of sample and grain sizes on mechanical properties of concrete, J. Mater. Civ. Eng. 30 (2018) 1-15.
[2] M. Darbor, L. Faramarzi, M. Sharifzadeh, Size-dependent compressive strength properties of hard rocks and rock-like cementitious brittle materials, Geosystem Eng. (2018) 1-14.
[3] M. Darbor, L. Faramarzi, M. Sharifzadeh, Performance assessment of rotary drilling using non-linear multiple regression analysis and multilayer perceptron neural network, Bull. Eng. Geol. Environ. (2017) 1-13.
[4] M. Darbor, The Effect of Anisotropy on Mechanical Properties, Rate of Penetration and Drilling Specific Energy of Rocks, Ph.D. thesis, Isfahan University of Technology, Isfahan, 2018.
[5] S.H. Hoseinie, H. Aghababaei, Y. Pourrahimian, Development of a new classification system for assessing of rock mass drillability index (RDi), Int. J. Rock Mech. Min. Sci. 45 (2008) 1-10.
[6] B. Amadei, Importance of anisotropy when estimating and measuring in situ stresses in rock, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 33 (1996) 293-325.
[7] W.J. Darlington, P.G. Ranjith, The effect of specimen size on strength and other properties in laboratory testing of rock and rock-like cementitious brittle materials, Rock Mech. Rock Eng. 44 (2011) 513-529.
[8] M.C. Villeneuve, M.S. Diederichs, P.K. Kaiser, Effects of grain scale heterogeneity on rock strength and the chipping process, Int. J. Geomech. 12 (2012) 632-647.
[9] G.M. Sabnis, S.M. Mirza, Size effects in model concretes?, J. Struct. Div. 105 (1979) 1007-1020.
[10] D. Allirot, J.P. Boehler, Evolution des proprittb mecanique dune roche stratifiee sous pression de confinement, Proc. 4th ISRM Congr. Montreux, (1979) 15-22.
[11] E. Hoek, E.T. Brown, Underground Excavations in Rock, Trans. Inst. Min. Metall., London, 1980.
[12] Z.P. Bazant, F. ASCE, Size effect in blunt fracture: Concrete, rock, metal, J. Eng. Mech. 110 (1984) 518-535.
[13] T. Ramamurthy, Strength, modulus responses of anisotropic rocks, In: J.A. Hudson (ed.), Compressive Rock Engineering, Pergamon, Oxford, 1993, pp. 313-329.
[14] A. Carpinteri, B. Chiaia, G. Ferro, Size effects on nominal tensile strength of concrete structures: Multifractality of material ligaments and dimensional transition from order to disorder, Mater. Struct. 28 (1995) 311-317.
[15] R. Kozul, D. Darwin, Effects of Aggregate Type, Size and Content on Concrete Strength and Fracture Toughness, SM Rep. No. 43, University of Kansas, Lawrence, KS, 1997.
[16] E. Eberhardt, B. Stimpson, D. Stead, Effects of grain size on the initiation and propagation thresholds of stress-induced brittle fractures, Rock Mech. Rock Eng. 32 (1999) 81-99.
[17] B. Chen, J. Liu, Effect of aggregate on the fracture behavior of high strength concrete, Constr. Build. Mater. 18 (2004) 585-590.
[18] Z.P. Bazant, F. ASCE, M. Vorechovsky, D. Novak, Asymptotic prediction of energetic-statistical size effect from deterministic finite-element solutions, J. Eng. Mech. 133 (2007) 153-162.
[19] M. Elices, C.G. Rocco, Effect of aggregate size on the fracture and mechanical properties of a simple concrete, Eng. Fract. Mech. 75 (2008) 3839-3851.
[20] M. Seddik Meddah, S. Zitouni, S. Belaabes, Effect of content and particle size distribution of coarse aggregate on the compressive strength of concrete, Constr. Build. Mater. 24 (2010) 505-512.
[21] E. Ali, W. Guang, Z. Zhiming, J. Weixue, Assessments of strength anisotropy and deformation behavior of banded amphibolite rocks, Geotech. Geol. Eng. 32 (2014) 429-438.
[22] X. Ding, L. Zhang, H. Zhu, Q. Zhang, Effect of model scale and particle size distribution on PFC3D simulation results, Rock Mech. Rock Eng. 47 (2014) 2139-2156.
[23] H. Masoumi, S. Saydam, P.C. Hagan, Unified size-effect law for intact rock, Int. J. Geomech. 16 (2015) 1-15.
[24] Tien, Y.M. and Kuo, M.C., “A failure criterion for transversely isotropic rocks”, Rock Mech. Min. Sci., Vol. 38, pp. 399-412, 2001.
[25] Al-Harthi, A.A., “Effect of planar structures on the anisotropy of Ranyah sandstone, Saudi Arabia”, Eng. Geol., Vol. 50, pp. 49-57, 1998.
[26] Esamaldeen, A., Guang, W., Zhiming, Z. and Weixue, J., “Assessments of strength anisotropy and deformation behavior of banded amphibolite rocks”, Geotech. Geol. Eng., Vol. 32, pp. 429-438, 2014.
[27] Yoshinaka, R., Osada, M., Park, H., Sasaki, T. and Sasaki, K., “Practical determination of mechanical design parameters of intact rock considering scale effect”, Eng. Geol., Vol. 96, No. 3-4, pp. 173-186, 2008.
[28] Poulsen, B.A. and Adhikary, D.P., “A numerical study of the scale effect in coal strength”, Int. J. Rock Mech. Min. Sci., Vol. 63, pp. 62-71, 2013.
[29] Ersoy, A. and Waller, M.D., “Textural characterization of rocks”, Eng. Geol., Vol. 39, pp. 123-136, 1995.
[30] Howarth, D.F. and Rowlands, J.C., “Quantitative assessment of rock texture and correlation with drillability and strength properties”, Rock Mech. Rock Eng., Vol. 20, pp. 57-85, 1987.
[31] ACI Committee, Measurement of properties of fiber reinforced concrete, ACI Mater. J. 85 (1988) 583-593.
[32] ASTM, Standard Specification for Concrete Aggregates- C33-03, Annual Book of ASTM Standards, 2003.
[33] ISRM, The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974-2006, In: R. Ulusay, J.A. Hudson (Eds.), Suggested Methods Prepared by the Commission on Testing Methods, Int. Soc. Rock Mech., Compilation Arranged by the ISRM Turkish National Group, Ankara, 2007, pp. 137-140.
[34] U. Atici, A. Ersoy, Correlation of specific energy of cutting saws and drilling bits with rock brittleness and destruction energy, J. Mater. Process Technol. 209 (2009) 2602-2612.
[35] Su, O., “Performance evaluation of button bits in coal measure rocks by using multiple regression analyses”, Rock Mech. Rock Eng., Vol. 49, pp. 541-553, 2016.
[36] Masoumi, H., Douglas, K.J. and Russell, A.R., “A bounding surface plasticity model for intact rock exhibiting size-dependent behavior”, Rock Mech. Rock Eng., Vol. 49, pp. 47-62, 2016.