در نظر گرفتن عدم قطعیت برای تخمین پارامترهای مقاومت برشی سنگ بکر با استفاده از روش‌های آماری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی معدن، دانشگاه ولی‌عصر (عج) رفسنجان، رفسنجان، ایران

2 دانشکده مهندسی معدن و متالوژی، دانشگاه یزد، یزد، ایران

چکیده

یکی از چالش‌های موجود در روند تحلیل پایداری و یا طراحی یک سازه سنگی به روش تعادل حدی، تعیین پارامترهای مقاومت برشی شامل چسبندگی و زاویه اصطکاک داخلی است؛ زیرا در عمل با توجه به ناهمگنی موجود در سنگ، پیش­بینی این پارامترها همواره با تردید همراه است. در چنین شرایطی اگر بتوان دامنه­ای از پارامترهای مقاومت برشی واقعی را به دست آورد، قابلیت اعتماد به نتایج بالاتر خواهد بود. در این مقاله برای رسیدن به هدف موردنظر، یک روش کاربردی بر مبنای روش­های احتمالاتی توسعه داده شده است. در گام اول برای تولید نمونه‌های تصادفی از پارامترهای مقاومت برشی با توسعه یک روش ابتکاری، گروه‌هایی از جفت تنش‌های کمینه و بیشینه تولید شده است. در گام بعدی پس از تولید پارامترهای مقاومت برشی با استفاده از دو معیار پرکاربرد، موهر­کلمب و هوک­براون و با استفاده از توزیع t، دامنه­ای که پارامترهای مقاومت برشی در آن قرار دارند با سطح اطمینان 95 درصد برای دو معیار شکست به­صورت جداگانه تعیین شده است. برای بررسی روش ارائه‌شده، مطالعه موردی روی نمونه‌های ماسه‌سنگ پینگ دینگ شان انجام شده است. نتایج حاصل از مطالعه موردی بیانگر این است که پیش‌بینی دامنه پارامترهای مقاومت برشی با روش توسعه داده‌شده در مقایسه با روش مرسوم از قطعیت بیشتری برخوردار است و بنابراین طراح اعتماد بیشتری به نتایج می‌تواند داشته باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Considering Uncertainty for Estimating Shear Strength Parameters of Intact Rock Using Statistical Methods

نویسندگان [English]

  • Mehdi Mohammadi 1
  • Mohammad Fatehi Maraji 2
1 Dept. of Mining Engineering, Vali-Asr University of Rafsanjan, Rafsanjan, Iran
2 Dept. of Mining and Metallurgy Engineering, Yazd University, Yazd, Iran
چکیده [English]

Summary
One of the most critical steps in the design process of a rock structure by the limit equilibrium method is to determine the shear strength parameters. Because the prediction of these parameters is always accompanied by uncertainty. In such cases, if the range in which the actual shear strength parameters are located is obtained, the results are more reliable.  Hence, in this paper, an applied technique based on probabilistic methods is developed. In the first step, by developing an innovative method for two widely used failure criteria, consist of Mohr-Coulomb and Hoek Brown, statistical samples of shear strength parameters are generated and latter, using the t distribution in which the shear strength parameters are located with confidence 95% are determined separately for the two failure criteria. The available data from the previous research are used for the case study. The results of the case study indicate that the prediction of shear strength parameters with the presented method is more accurate than the conventional methods.
Introduction
Stability analysis of rock structures in mining and civil structures, such as surface mine walls, dams, or rock slopes, is very necessary and important. Because the instability of each of them will cause damage and costs. Shear strength parameters are required for stability analysis. Estimation of shear strength parameters is a critical and vital step in the design and analysis of rock structures. Because the prediction of these parameters is always accompanied by uncertainty. In practice, for determining the shear strength parameters, two failure criteria consist of Mohr-Coulomb and Hoek-Brown, are widely used. The two criteria results are crisp values. Studies show that these results are affected by the uncertainties due to the heterogeneity of the rock or the mathematical relationship of the failure criterion. On the other hand, to estimate the shear strength parameters, at least the results of 5 triaxial stress tests are needed for determining these parameters based on regression. If the number of samples (number of tests) changes or the ultimate strength of one of the samples changes due to the influence of lateral stress in the experiments, the shear strength parameters vary by the regression of the results.
 In the past decades, some studies reported the determination of the equivalent parameters of shear strength based on the Hoek- Brown criterion [1-5]. According to Brown, the determination of exact equivalent shear strength parameters is a challenging point due to the inherent uncertainty of rock as well as the failure criterion [6]. In such cases, if the range in which the actual shear strength parameters are located is obtained, the results are more reliable [7-10].  Hence, in this paper, an applied technique based on probabilistic methods is developed. In the first step, by developing an innovative method for two widely used failure criteria, consisting of Mohr-Coulomb and Hoek-Brown, statistical samples of shear strength parameters are generated, and later, using the t distribution in which the shear strength parameters are located with confidence 95% are determined separately for the two failure criteria. The available data from the previous research are used for a case study (Table 1) [11].
Methodology and Approaches
The conventional method for determining the shear strength parameters is based on the regression of the results of at least 5 groups of data obtained from samples subjected to triaxial stress, according to the Mohr-Coulomb or Hoek-Brown criteria. But in practice, if there are two different groups of triaxial test results of the same type of rock, in the regression of the test results, the shear strength parameters are also changed, and the results are not reliable. Hence, in the first step, using an innovative method, groups of different triaxial test data are generated for the desired rock, and then the cohesion and internal friction angle are determined for each group, and finally, statistical samples of the shear strength parameters are predicted. By generating statistical samples (from shear strength parameters), the range in which the real shear strength parameters are located is determined using the t distribution. Therefore, the obtained result has the highest level of certainty, and the uncertainty is reduced.
Results
Figure 1 shows the shear strength parameters based on the developed method and the conventional method. According to the figure, the developed method is superior concerning the conventional method. This is because of the statistical samples that were produced to determine the range in which the real parameters are located are taken from the conventional method. In other words, if the conventional method is used, the results in Figure 1 may be used in the analysis. But by utilizing the developed method, shear strength parameters are determined with higher certainty and in a more realistic range.

کلیدواژه‌ها [English]

  • Shear Strength Parameters
  • Mohr Coulomb Failure Criterion
  • Hoek Brown Failure Criterion
  • Uncertainty
  • t Distribution
[1]                 Carranza-Torres, C. (2021). Computational tools for the analysis of circular failure of rock slopes. IOP Conference Series: Earth and Environmental Science.
[2]                 Shen, J., Karakus, M., & Xu, C. (2012). Direct expressions for linearization of shear strength envelopes given by the Generalized Hoek–Brown criterion using genetic programming. Computers and Geotechnics, 44, 139–146.
[3]                 Labuz, J.F., & Zang, A. (2012). Mohr–Coulomb Failure Criterion.  Journal of Rock Mechanics and Rock Engineering, 45, 975–979.
[4]                 Shen, J., Priest, S.D., & Karakus, M. (2012).  Determination of Mohr–Coulomb Shear Strength Parameters from Generalized Hoek–Brown Criterion for Slope Stability Analysis. Journal of Rock Mechanics and Rock Engineering, 45(1), 123–129.
[5]                 Rafiei Renani, H., & Martin. C.D. (2020). Slope Stability Analysis using Equivalent Mohr–Coulomb and Hoek–Brown criteria. Rock Mechanics and Rock Engineering, 53, 13–21.
[6]                 Mohammadi, M., & Tavakoli, H. (2015). Comparing the generalized Hoek-Brown and Mohr-Coulomb failure criteria for stress analysis on the rocks failure plane.  Geomechanics and Engineering, 9(1), 115-124.
[7]                 Brown, E.T. (2008). Estimating the mechanical properties of rock masses. In: Proceedings of the 1st southern hemisphere international rock mechanics symposium: SHIRMS 2008, Perth, Western Australia 1, 3–21.
[8]                 Wyllie, D.C., & Mah, C. (2004). Rock slope engineering: civil and mining" 4th edn. Spon Press, New York.
[9]                 Hoek, E. (1983). Strength of jointed rock masses. Ge´otechnique, 33(3), 187–223.
[10]             Hoek, E. (1990). Estimating Mohr–Coulomb friction and cohesion values from the Hoek–Brown failure criterion. International Journal of Rock Mechanics & Mining Sciences, 27(3), 227–229.
[11]             Amoushahi, S.,   Grenon, M., Locat, J., & Turmel, D. (2018). Deterministic and probabilistic stability analysis of a mining rock slope in the vicinity of a major public road — case study of the LAB Chrysotile mine in Canada.  Canadian Geotechnical Journal , 55(10), 290-310.
[12]             Bakhtiyari, E., Almasi, A., Cheshomi, A., & Hassanpour, J. (2017). Determination of Shear Strength Parameters of Rock Mass using Back Analysis Methods and Comparison of Results with Empirical Methods. The Journal of Scientific and Engineering Research2, 11, 35-42.
[13]             Hoek, E., & Brown, E.T. (1997). Practical estimates of rock mass strength. International Journal of Rock Mechanics & Mining Sciences, 34(8), 1165–1186.
[14]             Park, P., & Michalowski, R.L. (2021). Three-dimensional stability assessment of slopes in intact rock governed by the Hoek-Brown failure criterion. International Journal of Rock Mechanics & Mining Sciences, 137, 104522.
[15]             Yang, S.Q., Chen, M., Jing, H.W.,  Chen, K.F., & Meng, B. (2017). A case study on large deformation failure mechanism of deep soft rock roadway in Xin'An coal mine, China. Engineering Geology, 217, 89-101.
[16]             Fu, W., & Liao, Y. (2010). Non-linear shear strength reduction technique in slope stability calculation. Computers and Geotechnics, 37, 288–298.
[17]             Yang, X.L., & Yin, J.H. (2010). Slope equivalent Mohr–Coulomb strength parameters for rock masses satisfying the Hoek–Brown criterion. Rock Mechanics and Rock Engineering, 43(4), 505–511.
[18]             Chen, Y., & Lin, H. (2019). Consistency analysis of Hoek–Brown and equivalent Mohr–coulomb parameters in calculating slope safety factor. Bulletin of Engineering Geology and the Environment, 78, 4349–4361.
[19]             Zachariev, G., (2016). A Statistical Theory of the Damage of Materials. Modern Mechanical Engineering, 6, 129-150.
[20]             Kim, K., & Gao, H. (1995). Probabilistic approaches to estimating variation in the mechanical properties of rock masses. International Journal of Rock Mechanics & Mining Sciences Geomech Abstr, 34, 111–120.
[21]             Chen, Y., Lin, H., Li, S., Cio, Y., Yong, W., Wang, Y., & Zhao, Y. (2022). Shear expression derivation and parameter evaluation of Hoek–Brown criterion. Archives of Civil and Mechanical Engineering, 22(77), https://doi.org/10.1007/s43452-022-00403-x
[22]             Sari, M., (2009). The stochastic assessment of strength and deformability characteristics for a pyroclastic rock mass. International Journal of Rock Mechanics & Mining Sciences, 46(3), 613– 626.
[23]             Sari, M., Karpuz, C., & Ayday, C. (2010). Estimating rock mass properties using Monte Carlo simulation: Ankara andesites. Computers & Geosciences, 36(7), 959–969.
[24]             Idris, M., Saiang, A.D., & Nordlund, E. (2011). Numerical Analyses of the Effects of Rock Mass Property Variability on Open Stope Stability. American Rock Mechanics Association.
[25]             Rabiei Vaziri, M., Azizabadi, H.R., & Kariminasab, S. (2015). Estimating the Shear Strength Parameters of Rock Mass using Monte Carlo Method. " Iranian Journal of Mining Engineering, 10(27), 69- 80. (In Persian)
[26]             Mehrishal, S.A., (2021). Development of an analytical method for the calculation of the Mohr-Coulomb failure envelope. Journal of Analytical and Numerical Methods in Mining Engineering, 11(27), 19-29. (In Persian)
[27]             Li, S., Zhang, Y., Cao, M., & Wang, Z. (2022). Study on Excavation Sequence of Pilot Tunnels for a Rectangular Tunnel Using Numerical Simulation and Field Monitoring Method. Journal of Rock Mechanics and Rock Engineering, 55, 3507–3523.
[28]             Cai, M., Hou, P.Y., Zhang, X.W., & Feng, X.T. (2021). Post-peak Stress–Strain curves of brittle hard rocks under axial-strain-controlled loading. International Journal of Rock Mechanics and Mining Sciences, 147, 104921.
[29]             Ling, W., Zuoan, W., & Shen, J. (2016). Charts for estimating rock mass shear strength parameters. Geomechanics and Engineering, 10(3), 257- 267.
[30]             Mohammadi, M., (2021). Developing an Applied Method for Determining Geomechanical Parameters of Rock Mass Considering Uncertainty. Journal of Mineral Resources Engineering and the Iranian Mining Engineering, , 6(3), 99-114.
[31]             Balmer, G., (1952). A general analytical solution for Mohr’s envelope. Am Soc Test Mater, 1269–1271.
[32]             Yang, S., Tian, W. & Ranjith, P.G. (2017). Experimental Investigation on Deformation Failure Characteristics of Crystalline Marble Under Triaxial Cyclic Loading. Journal of Rock Mechanics and Rock Engineering, 50, 2871–2889.
[33]             Douglas, C., (2003). Applied Statistics and Probability for Engineers 6th Edition.  John Wiley & Sons, Inc.
[34]             You, M., (2010). Mechanical characteristics of the exponential strength criterion under conventional triaxial stresses." International Journal of Rock Mechanics & Mining Sciences,47(2),195–204.