[1] Rowan, L. C., Crowley, J. K., Schmidt, R. G., Ager, C. M., & Mars, J. C. (2000). Mapping hydrothermally altered rocks by analyzing hyperspectral image (AVIRIS) data of forested areas in the Southeastern United States. Journal of Geochemical Exploration, 68(3), 145-166.
[2] Van Der Meer, F. (2004). Analysis of spectral absorption features in hyperspectral imagery. International journal of applied earth observation and geoinformation, 5(1), 55-68.
[3] Petrovic, A., Khan, S. D., & Thurmond, A. K. (2012). Integrated hyperspectral remote sensing, geochemical and isotopic studies for understanding hydrocarbon-induced rock alterations. Marine and Petroleum Geology, 35(1), 292-308.
[4] Molan, Y. E., Refahi, D., & Tarashti, A. H. (2014). Mineral mapping in the Maherabad area, eastern Iran, using the HyMap remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 27, 117-127.
[5] Abdolmaleki, M., Tabaei, M., Fathianpour, N., & Gorte, B. G. (2017). Selecting optimum base wavelet for extracting spectral alteration features associated with porphyry copper mineralization using hyperspectral images. International Journal of Applied Earth Observation and Geoinformation, 58, 134-144.
[6] Rajendran, S., Hersi, O. S., Al-Harthy, A., Al-Wardi, M., El-Ghali, M. A., & Al-Abri, A. H. (2011). Capability of advanced spaceborne thermal emission and reflection radiometer (ASTER) on discrimination of carbonates and associated rocks and mineral identification of eastern mountain region (Saih Hatat window) of Sultanate of Oman. Carbonates and Evaporites, 26(4), 351-364.
[7] Tangestani, M. H., Jaffari, L., Vincent, R. K., & Sridhar, B. M. (2011). Spectral characterization and ASTER-based lithological mapping of an ophiolite complex: A case study from Neyriz ophiolite, SW Iran. Remote Sensing of Environment, 115(9), 2243-2254.
[8] Hashim, M., Pournamdary, M. and Pour, A. B. (2011) Processing and interpretation of advanced space-borne thermal emission and reflection radiometer (ASTER) data for lithological mapping in ophiolite complex. Int. J. Phys. Sci., 6, 6410– 6421.
[9] Rajendran, S., Al-Khirbash, S., Pracejus, B., Nasir, S., Al-Abri, A. H., Kusky, T. M., & Ghulam, A. (2012). ASTER detection of chromite bearing mineralized zones in Semail Ophiolite Massifs of the northern Oman Mountains: Exploration strategy. Ore geology reviews, 44, 121-135.
[10] Rajendran, S., Nasir, S., Kusky, T. M., Ghulam, A., Gabr, S., & El-Ghali, M. A. (2013). Detection of hydrothermal mineralized zones associated with listwaenites in Central Oman using ASTER data. Ore geology reviews, 53, 470-488
[11] Pournamdari, M., Hashim, M., & Pour, A. B. (2014). Spectral transformation of ASTER and Landsat TM bands for lithological mapping of Soghan ophiolite complex, south Iran. Advances in Space Research, 54(4), 694-709.
[12] Barry, P. (2001) EO-1/Hyperion Science Data User’s Guide. TRW Space, Defense & Information Systems, Redondo Beach, CA.
[13] Kruse, F. A., Boardman, J. W., & Huntington, J. F. (2003). Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping. IEEE transactions on Geoscience and Remote Sensing, 41(6), 1388-1400.
[14] Stocklin, J. 1968- Structural history and tectonics of Iran . A review; Amer. Assoc. Petrol. Geol. Bull., P. 1229-1258
[15] Paragon Co. 1974- Explanatory text of Minab quadrangle map 1: 250000 : Geol. Surv. Iran.
[16] Najafzadeh, Ali and Hamid Ahmadipour. “Using platinum-group elements and Au geochemistry to constrain the genesis of podiform chromitites and associated peridotites from the Soghan mafic–ultramafic complex, Kerman, Southeastern Iran.” Ore Geology Reviews 60 (2014): 60-75.
[17] Barry, P. S., Mendenhall, J., Jarecke, P., Folkman, M., Pearlman, J., & Markham, B. (2002, June). EO-1 Hyperion hyperspectral aggregation and comparison with EO-1 Advanced Land Imager and Landsat 7 ETM+. In IEEE International Geoscience and Remote Sensing Symposium (Vol. 3, pp. 1648-1651). IEEE.
[18] Ducart, D. F., Silva, A. M., Toledo, C. L. B., & Assis, L. M. D. (2016). Mapping iron oxides with Landsat-8/OLI and EO-1/Hyperion imagery from the Serra Norte iron deposits in the Carajás Mineral Province, Brazil. Brazilian Journal of Geology, 46(3), 331-349.
[19] Goodenough, D. G., Dyk, A., Niemann, K. O., Pearlman, J. S., Chen, H., Han, T., ... & West, C. (2003). Processing Hyperion and ALI for forest classification. IEEE transactions on geoscience and remote sensing, 41(6), 1321-1331.
[20] Ghaffari, O., Vadan Zoj, M. J., Mokhtarzadeh, M., (2016), Radiometric Corrections of Hyperion High-Definition Images in order to extract information on geological applications. Second National Conference on Spatial Information Technology Engineering, Tehran, Faculty of Mapping Engineering, Khajeh Nasir al-Din Tusi University of Technology (in Persian)
[21] Liang, S. & Li, X. & Wang, J. (2012). Advanced Remote Sensing. 10.1016/C2010-0-67304-4.
[22] Kruse FA, Lefkoff AB, Boardman JB, Heidebrecht KB, Shapiro AT, Barloon PJ, Goetz A.F.H (1993)The Spectral Image Processing System (SIPS) – interactive visualization and analysis of imagingspectrometer data, Remote Sensing of Environment 44: 145–163.
[23] Tangestani MH, Mazhari N, Agar B, Moore F (2008) Evaluating Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data for alteration zone enhancement in a semi-arid area, northern Shahr–e–Babak, SE Iran, International Journal of Remote Sensing 29: 2833–2850.
[24] Saed, S., Azizi, H., Daneshvar, N., Afzal, P., Whattam, S.A., Mohammad, Y.O., 2022 Hydrothermal alteration mapping using ASTER data, Takab-Baneh area, NW Iran: A key for further exploration of polymetal deposits. Geocarto International, 1-25 doi/abs/10.1080/10106049.2022.2059110.
[25] Mirsepahvand, F., Jafari, M.R., Afzal, P., Arian, M.A., 2022. Identification of Alteration Zones using ASTER Data for Metallic Mineralization in Ahar region, NW Iran. Journal of Mining and Environment 13(1), 309-324
http://dx.doi.org/10.22044/jme.2022.11477.2135
[26] Fakhari, S., Jafarirad, A., Afzal, P., & Lotfi, M. (2019). Delineation of hydrothermal alteration zones for porphyry systems utilizing ASTER data in Jebal-Barez area, SE Iran. Iranian Journal of Earth Sciences, 11(1), 80-92.
[27] Boardman, J. W., 1993, Automated spectral unmixing of AVIRIS data using convex geometry concepts: in Summaries, Fourth JPL Airborne Geoscience Workshop, JPL Publication 93-26, v. 1, p. 11-14
[28] Huntington, J. F. and Boardman, J. W., (1995), Semi-quantitative Mineralogical and geological mapping with 1995 AVIRIS data, Proc. Spectral Sensing Research ‘95, ISSSR, Published by the AGPS, 26 Nov - 1 Dec, 1995, Melbourne, Australia.
[29] Boardman, J. W., (1997), Mineralogic and geochemical mapping at Virginia City, Nevada using 1995 AVIRIS data, in Proceedings of the Twelfth Thematic Conference on Geological Remote Sensing, Environmental Research Institute of Michigan, Denver, CO, pp. 21-28.
[30] Kruse, F. A., Boardman, J. W., & Huntington, J. F. (2003). Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping. IEEE transactions on Geoscience and Remote Sensing, 41(6), 1388-1400.
[31] Harsanyi, J. C., Chang, C. I., 1994, Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach. IEEE Transactions on Geoscience and Remote Sensing, Vol. 32, pp. 779–785.
[32] Ferreir, G., White, K., Griffiths, G., Bryant, r., Stefofuli, M., 2002, The mapping of hydrothermal alteration zones on the island of Levos, Greece using an integrated remote sensing dataset, International of journal of Remote sensing, Vol. 23, pp. 341-356.
[33] Adeli, Z., Rassa, I., Darvishzadeh, A., 2008, Application of matched filtering technique to target alteration minerals. 29th Asian Conference on Remote Sensing (ACRS), Srilanka..
[34] Darhkordi, M, 1400. “Evaluation of structural control in the placement of chromite deposits in the southern part of Abdasht ultramafic massif (south of Baft city)”. Master's thesis, Kerman University, 53 pages.