رابطه خصوصیات مکانیکی با مقدار درصد کوارتز و فلدسپات سنگ‌های رسوبی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زمین شناسی کاربردی، دانشکده علوم زمین، دانشگاه خوارزمی، تهران، ایران

2 گروه مهندسی معدن، دانشکده فنی و مهندسی، دانشگاه تربیت مدرس، تهران، ایران

چکیده

خصوصیات مقاومتی سنگ بکر تابع ترکیب کانی‌شناسی و بافت سنگ است اما خصوصیات مقاومتی توده سنگ را می‌توان از طریق تحلیل ویژگی‌های سنگ بکر و ناپیوستگی‌ها به دست آورد. ویژگی‌های بافتی سنگ‌ها بر خواص پتروفیزیکی و مکانیکی آن‌ها تأثیر می‌گذارد. برخی از ارتباطات کمی بین خصوصیات پتروگرافی سنگ و خواص مکانیکی یافت شده است. این پارامترها تا حد زیادی پایداری توده سنگ را کنترل می‌کنند؛ بنابراین، ارزیابی رفتارهای آنی و بلندمدت سنگ‌ بر اساس برهم‌کنش بین پارامترهای مختلف بافت سنگ، خواص پتروفیزیکی و مکانیکی برای بسیاری از سازه‌های ژئومهندسی مهم است. در این تحقیق رابطه بین خصوصیات مکانیکی و ترکیب کانی‌شناسی تعدادی از سنگ‌های رسوبی که از نقاط مختلف کشور برداشت شده‌اند با انجام آزمایش‌های مقاومت تراکمی و کششی بر روی نمونه سنگ‌های جمع‌آوری‌شده، در آزمایشگاه تعیین شده است. سپس با روش XRD ترکیب کانی‌شناسی آنها مشخص گردید و با استفاده از روش‌های آماری ازجمله رگرسیون خطی و چند متغیره رابطه بین خصوصیات مقاومتی با ترکیب کانی‌شناسی نمونه سنگ‌ها تعیین شده است. نتایج به‌دست‌آمده در این تحقیق بیانگر رفتارهای متفاوتی از کانی‌های سازنده سنگ در برابر خصوصیات مکانیکی است. به‌طوری‌که کانی‌های غالب در نمونه سنگ‌ها بر روی خصوصیات مکانیکی آنها تأثیر زیادی خواهند داشت و کنترل‌کننده خصوصیات مکانیکی سنگ‌ها هستند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Relationship Between Mechanical Properties and Quartz-Feldspar composition of sedimentary rocks

نویسندگان [English]

  • POURIA Heidaryan 1
  • mohamadreza asef 1
  • Jafar Khademi Hamidi 2
  • mahdi talkhablou 1
1 Dept. of Applied Geology, Faculty of Earth Sciences, Kharazmi University, Tehran, Iran
2 Dept. of Mining Engineering, Technical and Engineering Faculty, Tarbiat Modares University, Tehran, Iran
چکیده [English]

Summary
The resistance properties of the intact rock are dependent on the mineralogical composition and texture of the rock material. In this research, some quantitative relationships were found between petrographic and mechanical properties of sedimentary rocks collected from different locations. The results revealed that stone-forming minerals have a great and governing impact on mechanical properties.
Introduction
In the past decades, several researchers investigated the relationship between mineralogical composition and geomechanical properties of different rock types. Much research has been done in the field of textural properties, and their impact on the mechanical properties and drillability [1]. Nonetheless, the influence of mineralogical and texture characteristics on engineering properties has not been well identified yet. This study aims to quantify the relationships between petrographic characteristics and mechanical properties of some sedimentary rocks [2-4].
Methodology and Approaches
Mechanical properties of samples such as uniaxial compressive strength and Brazilian tensile strength were determined in the lab. Then, XRD tests were accomplished to determine the mineralogical composition. Statistical methods were used to determine the relationship between the mineralogical composition of the rock samples and the mechanical properties. 
Results and Conclusions
Quartz is one of the most important rock forming minerals. Previous experimental research reported very complex and contradictory results on the impact of quarts on uniaxial compressive strength (UCS) of rock. Some research reported that the strength of granite increases with the increase of quartz percentage. Others claimed that quartz harms the strength of granite due to its brittleness. Some others found no significant correlation [5-9]. In this research a direct linear relationship with a strong correlation coefficient between quartz content and UCS and a weaker correlation with the tensile strength was observed.
Also, a strong inverse logarithmic relationship was observed between UCS and the feldspar content. (R2=0.84) that is in good agreement with some previous research. This phenomenon may be due to the presence of cleavage and micro-cracks in feldspar minerals. On the other hand, some research showed a direct relationship between the percentage of feldspar and UCS which contradicts observation in this research. Finally, an inverse strong correlation was observed between the feldspar content and Brazilian tensile strength and a weaker inverse correlation with the Schmidt hammer number. This can be due to the existence of weak bonding along the cleavage surfaces as well as the alteration of feldspars. This researcher also revealed that there is a direct strong logarithmic relationship between quartz to feldspar ratio (Q/F) with UCS, the Brazilian tensile strength and the Schmidt hammer number.

کلیدواژه‌ها [English]

  • Mineralogical composition
  • Mechanical strength
  • Uniaxial compressive strength
  • Brazilian tensile strength
  • Schmidt hammer
  • regression analysis
[1]                 D. F. Howarth and J. C. Rowlands, “Quantitative assessment of rock texture and correlation with drillability and strength properties,” Rock Mech. Rock Eng., vol. 20, no. 1, pp. 57–85, 1987, doi: 10.1007/BF01019511.
[2]                 K. Y. . Merriam. R,. Rieke . H.H., “TENSILE STRENGTH RELATED TO MINERALOGY AND TEXTURE OF SOME GRANITIC ROCKS.,” Eng. Geol., vol. 47, no. 4, pp. 155–160, 1970, doi: 10.1016/0379-6779(92)90376-T.
[3]                 A. SHAKOOR and R. E. BONELLI, “Relationship Between Petrographic Characteristics, Engineering Index Properties, and Mechanical Properties of Selected Sandstones,” Environmental & Engineering Geoscience, vol. xxviii, no. 1. pp. 55–71, 1991, doi: 10.2113/gseegeosci.xxviii.1.55.
[4]                 A. Tuǧrul and I. H. Zarif, “Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey,” Eng. Geol., vol. 51, no. 4, pp. 303–317, 1999, doi: 10.1016/S0013-7952(98)00071-4.
[5]                  Mendes, F. M., Aires-Barros, L., & Rodrigues, F. P. (1966, September). The use of modal analysis in the mechanical characterization of rock masses. In ISRM Congress (pp. ISRM-1CONGRESS). ISRM.
[6]                 Eberhardt, E., Stead, D., & Stimpson, B. (1999). Quantifying progressive pre-peak brittle fracture damage in rock during uniaxial compression. International Journal of Rock Mechanics and Mining Sciences, 36(3), 361-380.
[7]                 Chatterjee, R., & Mukhopadhyay, M. (2002). Petrophysical and geomechanical properties of rocks from the oilfields of the Krishna-Godavari and Cauvery Basins, India. Bulletin of Engineering Geology and the Environment, 61, 169-178.
[8]                 Özlürk, A., C., Nasuf, E. & Bilgin, N. (2004). The assessment of rock cutability, and physical and mechanical rock properties from a texture coefficient. Journal of The Southern African Institute of Mining and Metallurgy, 104(7), 397-402.
[9]                 Tamrakar, N. K., Yokota, S., & Shrestha, S. D. (2007). Relationships among mechanical, physical and petrographic properties of Siwalik sandstones, Central Nepal Sub-Himalayas. Engineering Geology, 90(3-4), 105-123.
[10]               Ündül, Ö., & Er, S. (2017). Investigating the effects of micro-texture and geo-mechanical properties on the abrasiveness of volcanic rocks. Engineering Geology, 229, 85-94.
[11]              Yusof, N. Q. A. M., & Zabidi, H. (2016). Correlation of mineralogical and textural characteristics with engineering properties of granitic rock from Hulu Langat, Selangor. Procedia Chemistry, 19, 975-980.
[12]              Alber, M., & Kahraman, S. A. İ. R. (2009). Predicting the uniaxial compressive strength and elastic modulus of a fault breccia from texture coefficient. Rock Mechanics and Rock Engineering, 42(1), 117.
[13]              Aydin, A., & Basu, A. (2005). The Schmidt hammer in rock material characterization. Engineering geology, 81(1), 1-14.
[14]              Han, Y., Li, X., & Feng, Y. (2020). A new approach to evaluate rock drillability of polycrystalline diamond compact bits using scratch test data. Energy Exploration & Exploitation, 38(4), 884-904.
[15]              Meng, Z., & Pan, J. (2007). Correlation between petrographic characteristics and failure duration in clastic rocks. Engineering geology, 89(3-4), 258-265.
[16]              Sajid, M., & Arif, M. (2015). Reliance of physico-mechanical properties on petrographic characteristics: consequences from the study of Utla granites, north-west Pakistan. Bulletin of Engineering Geology and the Environment, 74, 1321-1330.
[17]              Yesiloglu-Gultekin, N. U. R. G. Ü. L., Sezer, E. A., Gokceoglu, C., & Bayhan, H. (2013). An application of adaptive neuro fuzzy inference system for estimating the uniaxial compressive strength of certain granitic rocks from their mineral contents. Expert Systems with Applications, 40(3), 921-928.
[18]              Diamantis, K., Gartzos, E., & Migiros, G. (2014). Influence of petrographic characteristics on physico-mechanical properties of ultrabasic rocks from central Greece. Bulletin of engineering geology and the environment, 73, 1273-1292.
[19]              Gupta, A. S., & Rao, K. S. (2000). Weathering effects on the strength and deformational behaviour of crystalline rocks under uniaxial compression state. Engineering geology, 56(3-4), 257-274.
[20]              Přikryl, R. (2006). Assessment of rock geomechanical quality by quantitative rock fabric coefficients: limitations and possible source of misinterpretations. Engineering Geology, 87(3-4), 149-162.
[21]              Barbour, T. G., & Ko, H. Y. (1979, June). Relationship of mechanical, index, and mineralogic properties of coal measure rock. In ARMA US Rock Mechanics/Geomechanics Symposium (pp. ARMA-79). ARMA.
[22]              Hemmati, A., Ghafoori, M., Moomivand, H., & Lashkaripour, G. R. (2020). The effect of mineralogy and textural characteristics on the strength of crystalline igneous rocks using image-based textural quantification. Engineering Geology, 266, 105467.
[23]              Tiryaki, B., & Dikmen, A. C. (2006). Effects of rock properties on specific cutting energy in linear cutting of sandstones by picks. Rock mechanics and rock engineering, 39, 89-120.
[24]              Brattli, B. (1994). The influence of cataclasis on abrasion resistance of granitic rocks used as road surface aggregates. Engineering geology, 37(2), 149-159.
[25]              Hajiabdolmajid, V., & Kaiser, P. (2003). Brittleness of rock and stability assessment in hard rock tunneling. Tunnelling and underground space technology, 18(1), 35-48.
[26]              Sousa, L. M. (2013). The influence of the characteristics of quartz and mineral deterioration on the strength of granitic dimensional stones. Environmental earth sciences, 69, 1333-1346.
[27]              Yılmaz, N. G., Goktan, R. M., & Kibici, Y. (2011). Relations between some quantitative petrographic characteristics and mechanical strength properties of granitic building stones. International Journal of Rock Mechanics and Mining Sciences, 48(3), 506-513.
[28]              Lazemi, H., & Eskandari, M. (2012). Determination of Relation Between Uniaxial Compressive Strength with Point Load Index, Unit Weight and Porosity by Using Artificial Neural Network. Journal of Analytical and Numerical Methods in Mining Engineering, 2(3), 70-75. (In Persian).
[29]              Beheshti, S. H., Yarahmadi Bafghi, A., Ghorbani, A., & Rezvanianzadeh, M. R. (2022). Relationship between physical and mechanical properties of jointed rocks in Central Iran (Bafgh Block)‎. Journal of Analytical and Numerical Methods in Mining Engineering, 12(31), 1-13. (In Persian).
[30]              Ghaedi Faramoushjan, S., Jalalifar, H., & Kolahchi, R. (2022). Experimental analysis of SiO2 and CNT nanoparticles effects on the compressive strength of the concrete‎. Journal of Analytical and Numerical Methods in Mining Engineering, 12(31), 64-59. (In Persian).
[31]              Asadi Aghbolaghi, N., & Shafiei, A. (2020). Simulation of Water Jet Cutting for Granite by Using Smoothed Particle Hydrodynamics. Journal of Analytical and Numerical Methods in Mining Engineering, 10(23), 53-63. (In Persian).
[32]              Mohammadi, R., Samimi Namin, F., & Khademi Hamidi, J. (2019). Numerical analysis of disc cutter forces in linear rock cutting procedure using finite element method. Journal of Analytical and Numerical Methods in Mining Engineering, 9(20), 53-66. 10.29252/ANM.2019. 8036.1275. (In Persian).