تحلیل اثر نانوذرات در پایداری لوله‌های بتنی متخلخل مدفون حاوی جریان سیال به کمک روش عددی

نوع مقاله : مقاله پژوهشی

نویسنده

گروه مهندسی عمران، واحد جاسب، دانشگاه آزاد اسلامی، جاسب، ایران

چکیده

با توجه به کاربردهای گسترده‌ی لوله‌های بتنی مدفون متخلخل حاوی جریان سیال در زمینهٔ مهندسی عمران، ارائه یک مدل ریاضی مناسب جهت تحلیل پایداری و عملکرد دینامیکی آنها امری اساسی است. در این راستا، یک لوله بتنی مدفون با در نظر گرفتن تخلخل در مصالح بتنی و بستر اطراف تدوین می‌شود که به‌وسیله نانوذرات سیلیس تقویت شده است. سازه با استفاده از المان‌های پوسته استوانه و با بهره‌گیری از تئوری ردی مدل‌سازی می‌شود. برای محاسبه نیروی ناشی از جریان سیال درونی لوله، از معادله ناویراستوکس استفاده می‌گردد. تأثیر نانوذرات در لوله با استفاده از مدل اختلاط مدل‌نمایی می‌شود، و بستر خاک نیز با بهره‌گیری از فنرهای عمودی و لایه‌های برشی شبیه‌سازی می‌گردد. در نهایت، با بهره‌گیری از اصل همیلتون، معادلات حاکم بر سازه استخراج می‌شوند. برای تحلیل سازه از روش عددی المان محدود بزیر استفاده می‌شود و تأثیر پارامترهایی همچون درصد حجمی نانو ذرات، تخلخل بتن، بستر خاک، سیال درون لوله، و پارامترهای هندسی بررسی می‌شود. نتایج حاصل از تحلیل نشان می‌دهند که با افزایش درصد حجمی نانوذرات از صفر به 3 درصد، بیشینه فرکانس و سرعت بحرانی سیال به ترتیب 35 درصد و 38 درصد افزایش می‌یابد. همچنین، با افزایش تخلخل بتن از صفر به 6/0، فرکانس بیشینه و سرعت بحرانی سیال به ترتیب 26 درصد و 18 درصد کاهش می‌یابد. این نتایج می‌توانند به بهبود در طراحی و بهینه‌سازی لوله‌های بتنی حاوی جریان سیال منجر شوند و در فهم بهتر رفتار دینامیکی این سازه‌ها کمک نمایند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Analysis of the nanoparticles' effect on the stability of buried porous concrete pipes containing fluid flow using the numerical method

نویسنده [English]

  • Mahmood Rabani Bidgoli
Dept. of Civil Engineering, Jaseb Branch, Islamic Azad University, Jaseb, Iran
چکیده [English]

Considering the widespread applications of perforated concrete pipes containing fluid flow in civil engineering, providing a suitable mathematical model for analyzing their stability and dynamic performance is essential. In this regard, a buried concrete pipe is formulated, taking into account the permeability of concrete materials and the surrounding soil, reinforced with silica nanoparticles. The structure is modeled using cylindrical shell elements and by employing the theory of elasticity. To calculate the force induced by the fluid flow inside the pipe, the Navier-Stokes equation is utilized. The influence of nanoparticles in the pipe is modeled using a mixing model, and the soil bed is simulated using vertical springs and shear layers. Finally, by applying Hamilton's principle, the governing equations of the structure are extracted. The Bezier finite element method is employed for structural analysis, and the effects of parameters such as the volume fraction of nanoparticles, concrete permeability, soil bed, fluid inside the pipe, and geometric parameters are investigated. The results of the analysis indicate that with an increase in the volume fraction of nanoparticles from zero to 3%, the maximum frequency and critical fluid velocity increase by 35% and 38%, respectively. Additionally, as the concrete permeability increases from zero to 6.0, the maximum frequency and critical fluid velocity decrease by 26% and 18%, respectively. These findings can contribute to the improvement and optimization of the design of concrete pipes containing fluid flow, enhancing our understanding of the dynamic behavior of these structures...

کلیدواژه‌ها [English]

  • Buried concrete pipe
  • Navier-Stokes equation
  • Silica nanoparticles
  • Porosity
  • High-order shear theory
[1]                 Alijani, F., and Amabili, M. (2014). Non-Linear Vibrations of Shells: A Literature Review From 2003 to 2013. Int. J. Non-Linear Mech. 58: 233–257.
[2]                 Gonc¸alves, P.B., Pamplona, D., and Lopes, S.R.X.. (2008). Finite Deformations of an Initially Stressed Cylindrical Shell Under Internal Pressure. Int. J. Mech. Sci. 50(1): 92–103.
[4]                 Breslavsky, I.D.,   Amabili, M. and  Legrand, M. (2016).  Static and dynamic  behavior  of  circular  cylindrical shell made of hyperelastic arterial material, J. Appl. Mech. 83: 051002.
[5]                 Amabili, M. and Breslavsky, I.D. (2015). Displacement Dependent Pressure Load for Finite Deflection of Shells and Plates. Int. J. Non-Linear Mech., 77: 265–273.
[7]                   Ortigosa, R. and    Gil, A.J. (2017). A  computational  framework  for  incompressible electromechanics based  on convex multi-variable strain  energies for  geometrically  exact shell theory, Comput. Methods Appl. Mech. Engrg. 317: 792–816.
[8]                 Liu, Y., Wang, K.F. and Wang B.L. (2018). Mechanics modeling of dynamic characteristics of laminated thermoelectric cylindrical shells, Appl. Therm. Eng.  136: 730-739.
[9]                 Wang, M., Zhang, J., Wang W. Tang, W. (2018). Linear and nonlinear elastic buckling of stereolithography resin egg-shaped shells subjected to external pressure. Thin-Walled Struct. 127: 516–522
[10]   Mehar K., Panda S.K., Devarajan Y. and Choubey G. (2019). Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading. Compos Struct. 216: 406–414.
[11]   Xiang, P., Xia, Q., Jiang, L.Z., Peng, L., Yan, J.W. and Liu, X. (2021) Free vibration analysis of FG-CNTRC conical shell panels using the kernel particle Ritz element-free method. Compos Struct. 255: 112987.
[12]   Lotfan, S., Rafiei Anamagh M., Bediz B. (2021). A general higher-order model for vibration analysis of axially moving doubly-curved panels/shells. Thin-Walled Struct. 164: 107813.
[13]   Wu, J.h., Liu, R-J., Duan, Y. and Sun, Y-D. (2023). Free and forced vibration of fluid-filled laminated cylindrical shell under hydrostatic pressure Int. J. Press. Vessel. 202: 104925.
[14]   Nekouei, M., Mohammadi, M., Raghebi, M. and Motahari, N. (2023). Stability analysis of hybrid laminated cylindrical shells reinforced with shape memory fibers. Eng. Anal. Bound. Elem. 152: 739-756.
[15]   Sadeghi, M.H. and Karimi-Dona M.H. (2011). Dynamic behavior of afluid conveying pipe subjected to a moving sprung masse An FEM-state space approach, Int. J. Press. Vessel. 88: 123e131.
[16]   Mirramezani, M., Mirdamadi H.R. and Ghayour, M.  Nonlocal vibrations of shell-type CNT conveying simultaneous internal and external (2014). flows by considering slip condition, Comput. Methods Appl. Mech. Engrg. 272:100–120.
[17]   Sheng, G.G. and Wang, X.  (2017). Nonlinear response of fluid-conveying functionally graded cylindrical shells subjected to mechanical and thermal loading conditions. Compos Struct 168:675–684.
[18]   Durmus, D., Balkaya, M. and Kaya, M.O. (2021). Comparison of the free vibration analysis of a fluid-conveying hybrid pipe resting on different two-parameter elastic soils. Int. J. Press. Vessel. 193: 104479.
[19]   Ma, Y., You, Y., Chen, K. and Feng, A. (2022). Analysis of vibration stability of fluid conveying pipe on the two-parameter foundation with elastic support boundary conditions. JOES. https://doi.org/10.1016/j.joes.2022.11.002.
[20]   Liang, F., Chen, Z-Q. and Xu, W-H. (2023). Vibration isolation of a self-powered piezoelectric pipe conveying fluid composed of laminated fiber-reinforced composites. Appl. Ocean Res. 138:103664.
[21]   Fu, G., Wang, X., Wang, B., Su, J., Wang, K. and Sun, B. (2024). Dynamic behavior of axially functionally graded pipe conveying gas–liquid two-phase flow. Appl. Ocean Res.  142: 103827.
[22]   Wen, H., Yang, Y., Li, Y. and Tao, J. (2023). Three-dimensional vibration analysis of curved pipes conveying fluid by straight pipe-curve fluid element. Appl. Math. Model. 121: 270-303.
[23]   Qu, Y., Hua, H. and Meng, G. (2013). Adomain decomposition approach for vibration analysis of isotropic and composite cylindrical shells with arbitrary boundaries. Compos. Struct., 95: 307–321.
[24]   Saidi, A. Bahaadini, R. and Majidi-Mozafari, K. (2019) On vibration and stability analysis of porous plates reinforced by graphene platelets under aerodynamical loading, Compos. B. Eng. 164: 778–799.
[25]   Nguyen, L.B. Nguyen N.V., C.H., Thai, Ferreira, A.M.J., Nguyen-Xuan H. (2019). An isogeometric Bézier finite element analysis for piezoelectric FG porous plates reinforced by graphene platelets. Compos Struct. 214: 227–245.
[26]   Zhang, X.M., Liu, G.R., and Lam, K.Y. (2001). Vibration analysis of thin cylindrical shells using wave propagation approach. J. Sound Vib. 239: 397.