اولویت بندی ریسک ‎های زمین شناسی در تونل‎ ‎سازی مکانیزه با استفاده از روش های تصمیم گیری چند معیاره فازی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجو / دانشگاه صنعتی شاهرود

2 استاد / دانشگاه صنعتی شاهرود

3 استادیار / دانشگاه صنعتی سهند تبریز

چکیده

پروژه‌های زیرزمینی و زیرساختی عموماً پروژه های پیچیده با متغیرهای زیادی از جمله شرایط متغیر و نامطمئن زمین و آب های ‏زیرزمینی بوده و اطلاعات حاصله اکثراً به صورت غیرمستقیم به دست می‌آیند. این شرایط ریسک های قابل‌توجهی را بر تمام ‏اجزای پروژه حتی قسمت هایی که به صورت غیرمستقیم با پروژه در ارتباط می باشند، وارد آورده و منجر به صرف هزینه های زیاد و تأخیرات زمانی در انجام پروژه می گردد. مدیریت درست و به موقع این ریسک ها موجب حداقل کردن احتمال ‏وقوع یا اثر پیامدهای منفی بر اهداف پروژه می شود.‏‎ ‎رتبه بندی‎ ‎با فراهم‎ ‎آوردن‎ ‎امکان‎ ‎پاسخ دهی‎ ‎به موقع‎ ‎به همه ی ریسک ها، ‏کمک‎ ‎شایانی به‎ ‎انجام‎ ‎هرچه‎ ‎موفق تر‎ ‎فرآیند‎ ‎مدیریت‎ ‎ریسک‎ ‎می نماید. در این مقاله به اولویت بندی ریسک در تونل سازی مکانیزه ‏با استفاده از روش شباهت به گزینه ایده آل فازی در محیط‌های سنگی پرداخته شده است. به منظور این اولویت بندی ابتدا ‏ریسک های زمین شناسی شناسایی و عوامل مؤثر بر آن تعیین شده است. این محاسبات در 19 پهنه به صورت مجزا انجام و در ‏نهایت 3 ریسک به عنوان ریسک بالا (اصلی) در هر پهنه مشخص شده است. نتایج تحلیل ها نشان می‌دهد نشت گازهای سمی ‏موجود در سنگ ها و نشت و هجوم آب به داخل تونل به ترتیب مهمترین مخاطره های موجود در این تحقیق می باشند.‏

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Geological Risks Prioritization in mechanized tunneling using fuzzy ‎multi-criteria decision making

نویسندگان [English]

  • Seyed Rasol Ramezannia 1
  • mohammad ataei 2
  • hosein Mirzaei Nasirabad 3
چکیده [English]

Summary
Underground and infrastructure projects are generally complex project with many variables including ground ‎and groundwater conditions are variable and uncertain. These ‎conditions infliction significant risks in all project components or parts that are indirectly related with the ‎project, and has led to the high costs and time delays to the project. Ranking by providing timely response to risk it all, helpful to the risk management process will be more ‎successful. In this paper,  prioritize risks are discussed in the mechanized tunneling to using Fuzzy Technique ‎for Order Preferences by Similarity to Ideal Solution (FTOPSIS) in rocky environments. The calculations ‎performed in 19 separate zone and ultimately three risk as the high risk (main) in each zone specified. The ‎analysis results show that leaks of toxic gases in rocks and water leaks and influx into the tunnel in this study ‎are respectively most important risks.‎
 
Introduction
Risk assessment is one of the fundamental elements of risk ‎management, and with respect to the uncertain nature of tunneling projects and the need to spend resources, is ‎important. Ranking of risks is a key part of this process, because with ‎ranking, priority each risk in front of other risks specified and in the result, decision maker can be plan about the ‎the amount of allocation existing resources for deal with each risk.‎
 
Methodology and Approaches
In order to risk assessment, different methods have been introduced. In this paper, the method is Fuzzy Technique ‎for Order Preferences by Similarity to Ideal Solution has been used to rank the risks. In this study, according to Hydrogeology of tunnel route, kilometer of 00+000 to 13+290 divided to 19 ‎zone. 9 risk as the most important of the geological risks and 4 factor as effective criteria’s is introduced for ranking ‎in mechanized tunneling in rocky environments.
 
Results and Conclusions
The analysis results show that leaks of toxic gases in rocks and water leaks and influx into the tunnel are ‎respectively most important risks in the tunnel. Hence the should be by allocating more resources ‎seeking eliminate or reduce the damaging effects of these risks on project objectives. Therefore, the recommended, ‎strategies to counter risks listed to be determined before drilling operations, until in the event of, tunneling operations ‎to be performed without interruption.‎

کلیدواژه‌ها [English]

  • ‎Geological Risks
  • Risk Management
  • Mechanized Tunneling
  • Fuzzy Similarity to Ideal Solution
[1] You, K., Park, Y., Lee, J. (2005). Risk analysis for determination of a tunnel support pattern. Tunnelling and Underground Space Technology.
[2] Wagner, H. (2006). Risk Evaluation and Control in Underground Construction. International symposium on underground excavation and tunnelling.
[3] Ghosh, J.J. (2004). Identifying and assessing the critical risk factors in an underground rail project in Thailand: a factor analysis approach. International Journal of Project Management.
[4] Jaafari, A., Khatlan, A., & Pashandi, H. (2006).  Introduction of the risks of tunneling and providing a system to manage them. 7th Iranian Tunneling Conference. (in persian)
[5] Sayadi, A.R., Hayati, M., & Monjezi, M. (2011). Risk management in tunnel Construction using MADM techniques. Faculty of Management Of Tehran University. (in persian)
[6] Hayati, M., & Sayadi, A.R. (2012). Risk assessment of water conveyance tunnel projects using fuzzy logic (tunneling operation of Seymareh dam & power plant). 1st International and 3rd National Conference on Dams and hydropower. (in persian)
[7] Nezarat, H.R., Sereshki, F., & Ataei, M. (2012). Risk Management in mechanized tunneling with special Emphasis on geological risk. 2nd Conference on crisis management in the construction industry, life lines and underground structures. (in persian)
[8] Reilly, J., & Brown, J. (2004). Management and control of cost and risk for tunneling and infrastructure projects. Tunnelling and Underground Space Technology, 19(4), 330.
[9] Herrenknecht, E. M., & Bäppler, K. (2006). Mastering risks during mechanized excavation in urban centers with highly complex ground conditions. Tunnelling and Underground Space Technology, 21(3), 260-260.
[10] Shahriar, K., Sharifzadeh, M., & Hamidi, J. K. (2008). Geotechnical risk assessment based approach for rock TBM selection in difficult ground conditions. Tunnelling and Underground Space Technology, 23(3), 318-325.
[11] Yan-Hui, G., Zhi-Hua, Y., Shu-Cai, L., Wei, L., & Qing-Song, Z. (2009). Risk Measurement and Control of Water Inrush into Qiyue Mountain Tunnel. In Cutting-Edge Research Topics on Multiple Criteria Decision Making (pp. 523-530). Springer Berlin Heidelberg.
[12] Hamidi, J. K., Shahriar, K., Rezai, B., Rostami, J., & Bejari, H. (2010). Risk assessment based selection of rock TBM for adverse geological conditions using Fuzzy-AHP. Bulletin of engineering geology and the environment, 69(4), 523-532.
[13] Beard, A. N. (2010). Tunnel safety, risk assessment and decision-making. Tunnelling and Underground Space Technology, 25(1), 91-94.
[14] Fouladgar, M. M., Yadani-Chamzini, A., & Basiri, M. H. (2011). Risk evaluation of tunnelling projects by fuzzy topsis. In International conference on management (No. 1, pp. 1219-1232).
[15] Project Management Institute. (2008). A Guide to the Project Management Body of Knowledge. Pennsylvania. USA. ISBN: 9781933890517.
 [16] Association For Project Management. (2006). APM body of Knowledge.
[17] Nazari, A. (2007). Risk and risk management in systems urban rail transport (metro). 9th railway transportation conference. Tehran. (in persian)
[18] Srinivasa, R., Vinay, B. (2004). Integrated risk management in case of tightly couple software /hardware projects. STMicro electronics Private Limited. NOIDA.
[19] Pritchard, C.L. (2001). Risk Management Concepts and Guidance. Arlington. Va: ESI International.
[20] Reilly, J., Brown, J. (2004). Management and Control of Cost and Risk for Tunneling and Infrastructure projects. Tunnelling and Underground Space Technology.
[21] Ataei, M. (2010). ‎Fuzzy Multi Criteria Decision Making. Shahrood University of Technology. (in persian)
[22] Li, x., Reeves, G. (1999). A Multiple Criteria Approach to Data Envelopment Analysis. European Jornal of Operational, 507-517.
[23] Asgharpour, M.J. (2005). Multi Criteria Decision Making. University of Tehran Press. (in persian)