مکان‌یابی محل نصب ابزاردقیق در دیواره غربی معدن مس سرچشمه با استفاده از سامانه اطلاعات جغرافیایی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه صنعتی اصفهان

2 دانشکده مهندسی معدن، دانشگاه صنعتی اصفهان

3 مجتمع مس سرچشمه

چکیده

انتخاب نوع ابزاردقیق و محل مناسب برای نصب آن تأثیر به سزایی بر هزینه ابزار و عملیات معدن کاری دارد. استفاده از ابزار دقیق برای کنترل‌ پایداری شیب در کشور های پیشرفته، بعنوان افق جدید در مهندسی معدن و ژئومکانیک بطور گسترده مورد استفاده قرار گرفته است. پایداری دیواره غربی معدن مس سرچشمه در حال حاضر از مسائل مهم معدن می باشد. با مطالعات انجام‌شده در خصوص وضعیت زمین شناسی و ژئومکانیکی توده سنگ‌های دربرگیرنده ماده معدنی و هندسه معدن، نصب ابزار دقیق در دیواره غربی به عنوان مناسبترین راه حل برای کنترل پایداری می باشد. در این تحقیق برای مکان‌یابی محل مناسب نصب ابزار دقیق در دیواره غربی معدن مس سرچشمه از سامانه اطلاعات جغرافیایی استفاده شد. انتخاب نوع ابزار و تعیین مکان مناسب برای نصب آن نیاز به شناخت شرایط زمین شناسی، وضعیت ساختاری، خواص توده سنگ و هیدروژئولوژی ناحیه مورد مطالعه دارد. در این مقاله با تعیین و جمع آوری اطلاعات مذکور و تبدیل آنها به نقشه، محل مناسب برای نصب ابزار شناسایی شد. مهترین پارامتر‌های زمین شناسی و ژئومکانیکی شامل: سنگ‌شناسی، آلتراسیون، ارتفاع پیزومتری، گسل ها، وضعیت ناپیوستگی ها، فاصله‌داری ناپیوستگی‌ها، شاخص مقاومت زمین‌شناسی، امتیاز توده سنگ، ضریب کیفیت سنگ، مقاومت فشاری تک محوره، ارتفاع، شیب و جهت شیب مورد بررسی قرار گرفتند و در سامانه اطلاعات جغرافیایی به نقشه تبدیل شدند. لایه اطلاعاتی مربوط به هر پارامتر بر اساس وزن هر پارامتر، در نرم‌افزار ArcGIS9.3، کلاسه بندی و وزن دهی شد. تلفیق داده‌ها با استفاده از روش تحلیل سلسله مراتبی و منطق فازی انجام شد. در نهایت نقشه مناطق مطلوب جهت انتخاب محل مناسب برای نصب ابزار دقیق در دیواره غربی معدن مس سرچشمه تهیه شد و با انجام عملیات کنترل صحرایی، چندین ناحیه جهت مطالعات تکمیلی در مناطق پیشنهادی مشخص گردید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Instrumentation locating in the western wall of Sarcheshmeh copper mine using GIS.

نویسندگان [English]

  • Alireza shamsadini fard 1
  • Lohrasb Faramarzi 2
  • Raheb Bagherpour 1
  • Morteza asadipour maybodi 3
1 Isfahan University of Technology
2
3 Sarcheshmeh copper mine complex
چکیده [English]

Summary
The instruments locating has influence on cost-utility and mining operations. Monitoring rock deformations is important in assessing the stability of rock structures. The instrumentation system enables high precision assessment of strains and displacements.
Nowadays, stability of slope in advanced countries is controled by high-resolution tools and methods for monitoring data evaluation assist in the continuous interpretation of the behavior of ground and support interaction. Instruments can provide early warning of impending failures, allowing time for safe evacuation of the area and time to implement remedial action. Safety monitoring requires quick retrieval, processing, and presentation of data, so that decisions can be made promptly.
 
Introduction
Sarcheshmeh copper mine with the area of about 3.6 square kilometers, now the stability of western wall is currently an important problem. From the reasons mentioned above, the authors proposed that monitoring is the best applicable method to monitor stability of western wall of Sarcheshmeh copper mine.
Monitor of the stability of western wall, can detect shear zones and help determine whether shear is planar or circular. It is possible to determine whether movement is constant, accelerating, or slowing.
 
Methodology and Approaches
For the stability control of western wall, according to the wall geometry, rock type, geology conditions and the strength properties of rock masses and discontinuities, installing the instruments is the most appropriate way to control stability of this slope. Such technologies improve our ability to solve many problems in geo-science and geo-engineering.
In this paper, In order to locate a suitable location for installing the instrument, the geographic information system (GIS) was used. For selection of the useful location for instrument, the geological conditions, the structural and hydrogeological properties of the rock masses are collected and then converted in to photo maps. Then, the analytical hierarchy process (AHP) and fuzzy logic methods were used. Important geological and geomechanical parameters such as lithology, alteration, piezometer level, faults, discontinuities condition, spacing, geological strength index, rock mass rating the quality of rock, uniaxial compressive strength, elevation, dip and dip direction of slope at different level of mine were evaluated and then the GIS photo maps of each parameter prepared.
 
Results and Conclusions
Each layer for every parameter was georeferenced. Using the rating considered for each parameter by AHP method the reclassification of layers by ArcGIS9.3 software was done. The data layers were integrated using fuzzy method. An appropriate photo map for installation of the instrument in west wall of mine was produced. Finally, after field survey, several areas were identified and proposed for further investigation.

کلیدواژه‌ها [English]

  • Instrumentation
  • stability of slope
  • locating
  • geographic information system (GIS)
  • analytical hierarchy process (AHP)
[1] Jami, M. and Girard, P.E; (2001); Assessing and monitoring open pit mine high walls. National Institute for Occupational Safety & Health, Spokane Research Laboratory, C.M.S.P.
[2] Read, J.and Stacey, P; (2009); Guidelines for open pit slope design. CSIRO Publishing.
[3] Sugawara, K., D. Fukahori, L. Faramarzi and N. Nakamura; (2003); High-resolution tilt monitoring for slope stability assessment in limestone quarry. Proc. of the 1st Kyoto Int. Sym. on Underground Environment (keynote lecture), 51-62, Japan.
[4] Shimizu, N; (2009); Displacement measurements using Global Positioning System for rock movements-Fundamentals, new developments and practical applications.  Proc. Korea-Japan Joint Symposium on Rock Engineering, 17-43.
[5] Nakashima, S., Kawasaki, H., Kubota, S., Nakano, T. & N. Shimizu; (2012); Measurement of exterior deformation of an earth-filled dam using GPS displacement monitoring system. 12th ISRM International Congress on Rock Mechanics, Taylor & Francis, 1069-1072.
[6] N. Shimizu, T. Masunari, T. Iwasaki; (2012); GPS displacement monitoring system for the precise measuring of rock movements, 12th ISRM International Congress on Rock Mechanics, Taylor & Francis, 1117-1120.
[7] Dey, P. K., & Ramcharan, E. K; (2008); Analytic hierarchy process helps select site for limestone quarry expansion in Barbados. Journal of Environmental Management, 88(4), 1384-1395.
[8] Mathew, J.C.M; (2001); Suitable site identification for constructing high rise residential Building using GIS – A case study of Thiruvananthapuram city. GIS@Development, Centre for Spatial Data Management Systems. Noida.
[9] Tavares, G., Zsigraiová, Z., & Semiao, V; (2011); Multi-criteria GIS-based siting of an incineration plant for municipal solid waste. Waste management, 31(9), 1960-1972.
[10] Yogarajan N; (2002); Check dam site selection using GIS approach. Advance in Space Research. Vol. 13, 123-127.
[11] Anbalagan, R; (1997); Landslide hazard evaluation and zonation mapping in mountainous terrain. Engineering Geology vol. 32, 269- 277.
[12] Behkav Hamkar Co.; (2010) Sarcheshmeh final exploration report, National Iranian Copper Industries Co. Sarcheshmeh copper mine complex (in Persian).
[13] Mousavi M., Yarahmadi A., Bakhshi H; (2009); 3D Numerical slope stability analysis of west wall of Sarcheshmeh mine utilizing a Distinct Element Method. Journal of the college of the engineering. Vol. 43 (3), 311-323 (in Persian).
[14] Hoek, E., Brown, E.T; (1997); Practical estimates of rock masses strength. Int. Jr. Rock Mech. and Min. Sci., Vol. 34, (8), 1165-1186.
 [15] Boroushaki, S., Malczewski, J; (2008); Implementing an extension of the analytical hierarchy process using ordered weighted averaging operators with fuzzy quantifiers in ArcGIS. Computers & Geosciences 34, 399- 410.
[16] Linkov, I., Satterstrom, F.K., Steevens, J., Ferguson, E., Pleus, R.C; (2007); Multi- criteria decision analysis and environmental risk assessment for nanomaterials. Journal of Nanoparticle Research 9, 543-554.
[17] Saaty, T.L; (1980); The analytic hierarchy process: planning, priority setting, resource allocation. McGraw-Hill.
[18] Lee, A.H.I., Chen, W.C., Chang, C.J; (2008); A fuzzy AHP and BSC approach for evaluating performance of IT department in the manufacturing industry in Taiwan. Expert Systems with Application 34.