تأثیر بارگذاری دینامیکی بر نفوذپذیری توده سنگ درزه‌دار به روش شبکه‌ی درزه‌ی منفصل– روش المان مجزا

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی معدن، دانشگاه صنعتی اصفهان

چکیده

بارگذاری دینامیکی پدیده‌ای است که ممکن است در طبیعت به توده سنگ اعمال شده و حتی باعث تغییر در برخی ویژگی‌های ژئومکانیکی آن شود. نفوذپذیری یکی از خواص مهم و حیاتی توده سنگ در پروژه‌های معدنی و عمرانی است که ممکن است تحت تأثیر بارگذاری‌های دینامیکی مذکور، دچار تغییر شود. از طرفی طبیعت توده سنگ شامل شبکه‌ی شکستگی‌های مجزا است که می‌توان آن را با رویکرد تلفیقی شبکه‌ی درزه‌ی منفصل و روش المان مجزا (DFN-DEM) و نرم‌افزار UDEC مدل کرد. ازاین‌رو در این مطالعه، مدلسازی هیدرومکانیکی عددی تحت شرایط استاتیکی و دینامیکی به‌منظور مشخص کردن تأثیر بارگذاری دینامیکی بر نفوذپذیری انجام گرفته است. پس از بارگذاری‌های مذکور، جریان سیال در مدل‌ها شبیه‌سازی شده و مؤلفه‌های نفوذپذیری محاسبه و با یکدیگر مقایسه شده‌اند. نتایج نشان می‌دهد که بر خلاف نظرات منعکس‌شده در مطالعات قبلی، بارگذاری دینامیکی قابلیت انتقال درزه‌ها را تغییر داده و به‌تبع آن نفوذپذیری توده سنگ درزه‌دار را تحت تأثیر قرار می‌دهد. با وجود سختی نسبتاً بالای درزه‌ها در این مطالعه، نفوذپذیری محاسبه‌شده در شرایط بارگذاری دینامیکی به میزان 26% بیشتر از بارگذاری استاتیکی است. علت عمده‌ی این مسئله جابه‌جایی پی‌درپی بلوک‌ها طی بارگذاری دینامیکی و تا حدود اندکی تغییر در نحوه‌ی قرارگیری آنها نسبت به حالت قبل از عبور موج است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Dynamic loading effect on the permeability of fractured rock mass using DFN-DEM approach

نویسندگان [English]

  • Meysam Lak
  • Alireza Baghbanan
  • Hamid Hashemolhoseini
چکیده [English]

Summary
This study has been performed with the aim of investigation of dynamic loading effect on permeability of rock mass. The method is 2D numerical modeling that because of discontinuous nature of rock mass and also existence of fracture networks in it, the modeling has been carried out by Discrete Fracture Network-Discrete Element Method (DFN-DEM) conflation approach. Results show that dynamic loading changed the transmissivity of fractures and consequently increased the permeability of fractured rock mass.
Introduction
Dynamic loading is a phenomenon that may be applied to rock mass in nature and even leads to changes in some of its geo-mechanical properties such as permeability. The variation in the amount of fluid flow from which the predicted value in a sensitive project such as underground power stations, hydrocarbon fluid flow in its reservoirs and repositories of buried of nuclear waste can cause damages and demolitions. Hence, investigation of dynamic loading effects on the permeability of rock mass is important. In previous studies, some research has been accomplished in the field of rock mass hydromechanics and interaction between static stress and fluid flow in rock mass. However, the lack of evaluation of stress form (static or dynamic) on permeability of rock mass has been felt.
Methodology and Approaches
In this study hydro-mechanical numerical modeling has been carried out under static and dynamic stress conditions. All of geometrical and mechanical properties of the models have been for Sellafield site in Cambria, England. As previously mentioned, modeling has been performed by DFN-DEM conflation approach using UDEC. In order to realize results of the method, data from a real earthquake have been utilized as a dynamic boundary conditions. Modeling in this study has been conducted in two groups. Group 1 contains models which have been placed under fluid flow without dynamic loading (in static conditions). In the group 2, the same models have been put under dynamic loading and then under fluid flow conditions.
Results and Conclusions
The results show that in contrary with the previous consideration, at least dynamic loading changes the transmissivity of fractures and therefore violates the permeability of fractured rock masses. Despite the fact that in our case study, fracture stiffness is relatively high, calculated permeability of rock mass is greater by 26% at dynamic loading compared with the static loading condition. The major reason is that dynamic loading has caused successive moving the blocks and possible changes in their positions relative to the previous state.

کلیدواژه‌ها [English]

  • Earthquake
  • dynamic analysis
  • Discrete fracture network
  • permeability
  • UDEC
[1] Ivars, M. (2006), Water inflow into excavations in fractured rock-a three-dimensional hydro-mechanical numerical study. International Journal of Rock Mechanics and Mining Sciences, 43, 705-725.
[2] Levasseur, L., Charlier, R., Frieg, B., & Collin, F. (2010). Hydro-mechanical modelling ofthe excavation damaged zone around an underground excavation at Mont Terri Rock Laboratory. International Journal of Rock Mechanics and Mining Sciences, 43, 414-425.
[3] Chen, H. M., Zhao, Z. Y., Choo, L. Q., & Sun, J. P. (2015). Rock cavern stability analysis under different Hydro-Geological conditions using the coupled Hydro-Mechanical model, Rock Mechanics and Rock Engineering.
[4] Li, L., Liu, H. H. (2015). EDZ formation and associated hydromechanical behaviour around ED-B tunnel: A numerical study based on a two-part Hooke’s model (TPHM). KSCE Journal of Civil Engineering, 19(1), 318-331.
[5] Baghbanan, A. (2008), Scale and stress effects on Hydro-Mecanical properties of fractured rock masses. PhD thesis, Supervisor: Lanru Jing, Royal Institute of Technology (KTH), Stockholm, Sweden.
[6] Min, K. B., Rutqvist, J., Tsang, Ch. F., & Jing, L. (2004). Stress-dependent permeability of fractured rock masses: a numerical study. International Journal of Rock Mechanics and Mining Sciences, 41, 1191-1210.
[7] Rejeb, A., Bruel, D. (2001), Hydromechanical effects of shaft sinking at the Sellafield site. International Journal of Rock Mechanics and Mining Sciences, 38, 17-29.
[8] Min, K. B., Jing, L., & Stefansson, O. (2004), Determining the equivalent permeability tensor for fractured rock masses using a stochastic REV approach: Method and application to the field data from Sellafield, UK. Hydrogeology Journal, 12, 497-510.
[9] Figueiredo, B., Tsang, Ch. F., Rutqvist, J., & Niemi, A. (2015). A study of changes in deep fractured rock permeability due to coupled hydro-mechanical effects. International Journal of Rock Mechanics and Mining Sciences, 79, 70-85.
[10] Souley, M., Lopez, Ph., Boulon, M., & Thoraval, A. (2015). Experimental Hydromechanical Characterization and Numerical Modelling of a Fractured and Porous Sandstone. Rock Mechanics and Rock Engineering, 48, 1143-1161.
[11] Selvadurai, A.P.S. (2015), Normal stress-induced permeability hysteresis of a fracture in a granite cylinder. Geofluids, 15, 37-47.
[12] Mirzaei-Paiaman, A., Nourani, M. (2012). Positive effect of earthquake waves on well productivity: Case study: Iranian carbonate gas condensate reservoir. Scientia Iranica C, 19(6), 1601-1607.
[13] Huh, C. (2006).,Improved oil recovery by seismic vibration: a preliminary assessment of possible mechanisms, In first International Oil Conference and Exhibition in Mexico. Cancun, Mexico.
[14] Kouznetsov, O. L., Simkin, E. M., Chilingar, G. V., & Katz, S. A. (1998), Improved oil recovery by application of vibro-energy to waterflooded sandstones. Journal of Petroleum Science and Engineering, 19, 191-200.
[15] Candela, T. H., Brodsky, E. E., Marone, C. H., & Elsworth, D. (2014), Laboratory evidence for particle mobilization as a mechanism for permeability enhancement via dynamic stressing.  Earth and Planetary Science Letters, 392, 279-291.
[16] Joolaie, A. and A. Baghbanan (2013), "3D modeling of fluid transmission network in jointed rocks using pipe network model and discrete element method.”, 9th international civil engineering congress, Isfahan University of Technology, Isfahan, Iran (in Persian).
[17] Baghbanan, A., Jing, L. (2007), Hydraulic properties of fractured rock masses with correlated fracture length and aperture. International Journal of Rock Mechanics and Mining Sciences, 44, 704-719.
[18] Baghbanan, A., Jing, L. (2008). Stress effects on permeability in a fractured rock mass with correlated fracture length and aperture. International Journal of Rock Mechanics and Mining Sciences, 45, 1320-1334.
[19] Blum, Ph., Mackay, R., Riley, M. S., & Knight, J. L. (2005). Performance assessment of a nuclear waste repository: Upscaling coupled hydro-mechanical properties for far-field transport analysis. International Journal of Rock Mechanics and Mining Sciences, 42, 781-792.
[20] Bhasin, R., Kaynia, A. M. (2004), Static and dynamic simulation of a 700-m high rock slope in western Norway, Engineering Geology, 71, 213-226.
[21] Choi, S. O., Chung, S. K. (2004). Stability analysis of jointed rock slopes with the Barton-Bandis constitutive model in UDEC, International Journal of Rock Mechanics and Mining Sciences. 41, 469-475.
[22] Itasca Consulting Group, Inc, (2000). (UDEC) Universal Distinct Element Code (Version 3.1) User's Guide, Minneapolis, Minnesota.
[23] Sobhani, E. (2012). "Numerical analysis of blast induced waves propagation in continuous and discontinuous media.” MSc thesis, Supervisors: Mahmood Vafaian and Alireza Baghbanan, Isfahan University of Technology (IUT), Department of civil engineering (in Persian).